JP19

1. はじめに

分子力学法は古典力学関数で構成された分子 力場ポテンシャルを用いるため、比較的少ない計 算量で対象となる分子の平衡構造や物性を速や かに求めることができる。そのため、生体高分子 や機能性材料などの巨大分子や分子複合体、ある いは分子集合体系の動的構造解析などにも利用 されることが多い。しかし、現在広く利用されて いる分子力場は単一分子の構造とエネルギーを 再現するように最適化されているため、例えば分 子性結晶の結晶構造を再現することは難しい。

そこで我々は、単一分子から分子集合体までを 精密に扱うことのできる高精度分子力場ポテン シャルを目指し、その第一段階として、生体高分 子を含む有機化合物の結晶構造を再現すること ができる結晶力場の開発に取り組んできた。従来 の分子力場が結晶構造を再現できない第一の理 由は、分子内の構造を再現するために最適化され た非結合相互作用を分子間相互作用の評価に流 用していることにある。第二に、水素結合に代表 されるように原子間が近接することによって誘 起される化学効果を正確に評価することは難し いことである。

そこで本研究では、これまで困難であった非結 合相互作用を、誘起相互作用を考慮しながら独立 に評価するため、まず、ケンブリッジ構造データ ベース(CSD)から強い近距離相互作用を示す原 子ペアを抽出し、以前から水素結合相互作用関数 として知られている Lippincott-Schröder 関数の改 良式を用いて表現する。次に、この改良式を従来 の分子力場における非結合相互作用(v d W と静 電相互作用)関数と合わせて分子間ポテンシャル 関数として、CSDから注意深く選択した150種類 の結晶構造を再現するようにパラメータの最適 化を行う。そして、最適化したパラメータを用い て格子定数の最適化を行い、実験値(CSD)と の比較から結晶力場を評価する。

2. 分子力場ポテンシャルの構築

2.1 近距離相互作用の抽出

様々な近距離相互作用について詳細に調べる ため、多くの原子タイプを定義した。本研究で扱 う原子タイプを以下に示す。

CSD に基づいた結晶力場の構築 (豊橋技術科学大学)

○小畑 繁昭、後藤 仁志*、中山 尚文

- 炭素…sp3(C_{sp3}),sp2(C_{sp2}),カルボニル基(C_{carbonyl}), 芳香環(C_{aromatic})
- 酸素…カルボニル基(O_{carbonyl}),アルコール(O_{alcohol}), エーテル(O_{ether})
- 窒素…アミン(N_{amine}),イミン(N_{imine}),アミド(N_{amide})

水素…C_{sp3}H,C_{sp2}H,C_{carbonyl}H(アルデヒド), C_{aromatic}H,O_{alcohol}H,O_{carboxylic acid}H, O_{enol,phenol}H,N_{amine}H,N_{imine}H,N_{amide}H

それぞれの組み合わせについて相互作用を考 え、実際に我々が考慮した近距離相互作用は、 CH...O/N 相互作用、OH...O/N 相互作用、NH...O/N 相互作用、CH...π相互作用である。これらの相互 作用を評価するため、それぞれの相互作用が関与 すると思われる結晶構造を、以下の条件のもと CSD から抽出した。

- 構成元素は、C,H,O,N を含む化合物
- R値が 5%以下
- 測定温度は室温
- CH 基、OH 基、NH 基と O,N 間の距離、CH 基と C 間の距離が 5 Å以下

2.2 結晶構造内の近距離相互作用

抽出した結晶構造から、各相互作用対の距離情報を用い、距離分布ヒストグラムを作成し、比較検討した。ここでは典型的な水素結合である OalcoholH...Oalcoholの例を示す(図1)。

図1 O_{alcohol}H...O_{alcohol}間の距離分布ヒストグラム O_{alcohol}H...O_{alcohol}距離分布ヒストグラムに関し て、およそ 1.9Å部分にピークが存在することか ら、この付近に強い水素結合が存在していること がわかる。また、3.3Å付近のピークは、一般的な 力場においてOH...O間のvdW距離がおよそ3.2 Åであることから考えても、vdW相互作用に帰 属するものと思われる。このように、すべての相 互作用に関して検討を行ったところ、結晶中にお いて、OH...Namide、NimineH...N、 間に

よる近距離相互作用は見られなかった。

2.3 近距離相互作用ポテンシャルの導出

導き出した距離分布ヒストグラムから、確率密 度分布を求め、式1より確率密度分布をエネルギ 一分布に変換する。得られたエルギー分布を再現 するためのポテンシャル関数としては、これまで の研究で、水素結合ポテンシャルを最もよく表現 することがわかっている、Modified Lippincott -Schröder 関数(以下 MLS 関数)を用いる(式2)。

 $E'_{hb} = -kT \log_e \rho(r,T) \cdots \exists 1$

 $E(r) = -D \exp\{-\alpha (r-r_e)^2\} \quad \cdots \quad \exists 2$

MLS 関数に用いられる関数パラメータ、原子間 平衡距離 r_e、その分布の広がりα、そしてポテン シャル井戸の深さ D は、エネルギー分布の近距離 相互作用が影響していると思われる範囲とうま く MLS 関数のカーブが一致するように調整する ことにより決定している(図 2)。この作業により、 それぞれの相互作用における最適 MLS 関数パラ メータを導いた。その一部を表1にまとめている。

図2ポテンシャルの導出 (O_{alcohol}H...O_{alcohol})

表1	CSDから導き出した MLS 関数のパ	ペラ	メ	ータ
----	---------------------	----	---	----

	D	α	r _e	
Type of Interaction	kcal·mol ⁻¹	Å-1	Å	
OalcoholHOcarbonyl	2.25	18.00	2.04	
O _{alcohol} HO _{ether}	1.67	25.91	2.01	
O _{alcohol} HO _{alcohol}	3.06	20.00	1.92	

2.4 分子間ポテンシャルの決定

分子間ポテンシャルは、vdW相互作用と静電 相互作用に、新たに近距離相互作用を加え、それ ぞれ独立かつ精密に表現できるポテンシャル関 数を与えた(式3,式4および式2)。

● vdW 相互作用(Buffered-14-7 型関数)

$$E_{vdW} = \sum_{i,j} \varepsilon_{ij} \left(\frac{1.07R_{ij}^*}{r_{ij} + 0.07R_{ij}^*} \right)^7 \left(\frac{1.12R_{ij}^{*7}}{r_{ij}^7 + 0.12R_{ij}^{*7}} - 2 \right) \cdots \overrightarrow{\mathbb{C}} 3$$

- 静電相互作用 $EQ_{ij} = Kq_iq_j/(D(R_{ij} + \delta)^n) \cdots 式 4$
- 近距離相互作用 (MLS 関数) $E(r) = -D \exp\{-\alpha (r - r_e)^2\} \cdots 式 2$

MLS 関数は本研究で近距離相互作用を適切に

評価するために新たに加えたポテンシャル関数 であり、構築する新しい分子間ポテンシャルを特 徴付けている。

関数パラメータは、Buffered-14-7 型関数、静電 相互作用関数では MMFF94 力場パラメータに固 定しており、MLS 関数の三種類のパラメータは遺 伝的アルゴリズムによる分子力場ポテンシャル パラメータ最適化プログラム KGA99 を用いて CSDより厳選した 150 種類の結晶構造をよく再現 するように最適化した。但し、ポテンシャル井戸 の深さを示すパラメータ D に関しては、他の相互 作用、つまり v d W 相互作用と静電相互作用との バランスを取る必要があるため、あらかじめ調整 した上で最適化を行っている。

3. 結果及び考察

以上のように決定した分子間ポテンシャルと KGA99により最適化された MLS 関数パラメータ を用いて、パラメータ最適化の際に用いた 150 種 類の結晶構造に対して格子定数の最適化を行っ た。そして、最適化後の格子定数の値と実験値と の平均二乗誤差を求め表 2 に示している。また比 較のため、分子間ポテンシャルに MLS 関数を導 入しない場合(表上段)と、導入した場合(表下 段)それぞれについて求めている。

表 2 格子定数の変化量						
	ΔΑ	ΔB	ΔC	Δα	Δβ	Δγ
	0.393	0.375	0.388	0.301	1.656	0.309
RMS	0.274	0.287	0.334	0.307	1.535	0.289

(上段:Buffered-14-7 下段:Buffered-14-7+MLS) 結果、MLS 関数により近距離相互作用を適切に 評価した分子間ポテンシャルの方が格子定数を よく再現することがわかる。さらに、格子定数の 再現性を向上させるため、最適化後の結晶構造と CSD 内の結晶構造とを詳細に比較検討を行った ところ、MLS 関数で表現された近距離相互作用に よる効果の多くが、過小評価されていることがわ かった。これをもとに、適切に近距離相互作用が 評価されるように、MLS 関数のパラメータを慎重 に修正したところ非常に高い再現性を実現する ことができた(表 3)。

表3 格子定数の変化量(MLS 関数パラメータ修正後)

	ΔA	ΔB	ΔC	Δα	Δβ	Δγ
	0.393.	0.375	0.388	0.301	1.656	0.309
RMS	0.173	0.162	0.157	0.033	0.993	0.162

(上段:Buffered-14-7 下段:Buffered-14-7+MLS) これらの結果から、本研究で構築した結晶力場 は、分子間相互作用をより厳密に評価することが 可能であり、そのため結晶構造を高い精度で再現 することができると考えられる。