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はじめに 
創薬のリード探索段階における構造展開を手

助けするためには、探索スクリーニングの段階で

できるだけ多くの構造活性相関情報を取得する

ことが望ましい。そこで我々は、スクリーニング

化合物の選抜に能動学習法を用いることを検討

しており1), 12)、今回は、我々が独自に開発した記

述子サンプリング法を用いた能動学習法につい

て報告する。 

能動学習法は、学習者(コンピュータ)が訓練デ

ータを能動的に選択することで予測精度を向上

させる学習法である2)。化合物選抜において問題

となるのは、一部分の選択データによる構造活性

相関ルールに基づいて化合物を選択すると、化合

物の多様性が失われる危険性があることである。

これは、これまでに発見された薬となるべく異な

る化合物を選抜し新たな薬を創るという目的に

合致しない。そこで、なるべく多様な化合物を選

択するため、記述子サンプリング法を用いた能動

学習法を開発した。 

 スクリーニング化合物選抜法の検証としては、

G蛋白質共役型受容体(GPCR)のうち生体アミン

受容体に作用する合成リガンドを対象とし、既知

リガンド化合物と一般試薬を合わせた化学構造

データベースから、能動学習法を用いたリガンド

化合物の抽出を検討した。 

方法 

１) 構造情報の取得と分類 

治験薬の化学構造が収められているデータ 

ベースPharmaprojects (2004.02)3)から標的タンパ

ク質の名前で検索し、生体アミン受容体である、

アドレナリン、ドパミン、ヒスタミン、ムスカリ

ン、セロトニンの各受容体に作用する1,551化合物

を抽出し4)、正例(活性あり)とした。 

一方、負例(活性なし)は、Pharmaprojectsの正例

以外の9,340化合物と、一般試薬データベース

Available Chemicals Directory (ACD 2002.10)5)で次

の条件を満たす246,100化合物とした。 

・ 分子量100～1000 

・ 重原子数6個以上 

・ 原子種はC, H, N, O, S, P, F, Cl, Br, Iに限定 

・ 重複登録された化合物を1個にまとめる 

・ 同位元素含有、重水素含有化合物は除く 

・ ペプチドを除く 

・ 反応性のある化合物を除く 

２) パラメータ(構造記述子)の取得 

 下記、171種類の構造記述子を算出した。 

・ MDL Molskey6)：166種類 

・ 物理化学定数 ：5種類 (ClogP7) , Molecular 

Weight8), Hydrogen-Bond Acceptors8), 

Hydrogen-Bond Donors8), Rotatable Bond9))  

３) 能動学習法 

能動学習法は、まずランダムにデータを選択し

た後、以下の手順を繰り返す：選択データの活性

を薬理実験で決定し、構造活性相関ルールを作成

し、そのルールを用いて活性未知のデータ中から

データを選択する。この際、全データでなくサン

プリングしたデータを用いて複数のルールを生

成するBagging10)と呼ばれる手法を用いている。し

かし、化合物選抜においては化合物の多様性が失

われる危険性がある。例えば、活性に関係ない部
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分構造Sが、たまたま選択データにおいて全正例

に含まれ全負例に含まれないと仮定する。この部

分構造Sを表現する記述子Dは、訓練データ(選択

データ)で最も正例と負例を分類できるので、ほ

とんどのルールではDが用いられ、Sを含まないデ

ータは負例であると予測される。従って、Sを含

まない化合物は選抜されず、選択された化合物は

多様性を失ってしまう。この問題を防ぐため、

我々は記述子サンプリング法を開発した11)。これ

は、個々の分類器生成の際に、サンプリングによ

る一部の記述子を用いる手法であり、Baggingの手

法を記述子に応用したものである。この手法を用

いると、記述子Dを用いないルールも生成され、S

を含まない化合物の選抜が可能となる。 

検証実験は、10分割交差法を用いて評価した。

これは、データを均等に10分割し、1割を予測の

ためのテストデータとして除いて、残り9割でス

クリーニングを行い、その10回の繰り返しの平均

で評価するものである。1サイクルに選択する化

合物数は5,000、能動学習で生成する分類器数は

100とした。能動学習法の有効性を示すため、対

照実験として、選択された活性化合物に類似した

化合物をTanimoto係数により選択する手法(類縁

化合物選択法)の実験も行った。ただし、類縁化

合物選択法の記述子はMolskey166種のみである。 

結果と考察 

１) 記述子サンプリング法 

記述子サンプリング法の有無によるスクリー

ニングにおけるヒット率の推移を図1に示す。横

軸は選択データ数、縦軸はスクリーニングデータ

の活性化合物中で選択データに含まれる割合(%)

であり、スクリーニング終了時にはどのような手

法でも全ての活性化合物が選抜され100%となる。

図1より、90 %の活性化合物選抜には、3万データ

(全データの約13%)が必要だが、記述子サンプリ

ング法を用いると2.5万(約11%)で十分であった。

また、99%の活性化合物選抜には、8万データ(約

35%)が必要だが、記述子サンプリング法を用いる

と7.5万(約32%)で十分であった。 

次に、テストデータを予測した際のヒット率の

推移を図2に示す。横軸は選択データ数、縦軸は

テストデータ中の活性化合物のスコア上位2,000

でのヒット率である。全体的に記述子サンプリン

グ法を用いた場合のヒット率が高かった。これら

の結果から、記述子サンプリング法は有効である

といえる。以降、記述子サンプリング法を用いた

能動学習法を能動学習法DSと略す。 

２) 能動学習法と他の手法との比較 

能動学習法DS、類縁化合物選択法、ランダムス

クリーニングに対して、スクリーニングにおける

ヒット率の推移を図3に示す。90%の活性化合物選

抜には、ランダムスクリーニングは90%のデータ、

類縁化合物選択法は5万データ(約22%)が必要で

あり、99%には、ランダムスクリーニングは99%、

類縁化合物選択法は14万(約61%)が必要であった。

一方、能動学習法DSは90%には2.5万(約11%)、

99%には7.5万(約32%)で十分であり、選択化合物

数や実験回数は、ランダムスクリーニングに比べ

大きく減り、類縁化合物選択法に比べ半減した。

これは、能動学習法DSが実験コストやスクリーニ

ング期間を従来に比べ削減できることを示して

いる。なお、能動学習法DSの結果は、Molskeyの

166種の記述子のみを用いた場合でも同様であり
10)、この類縁化合物選択法との差は記述子の差で

なく手法の差であることを確認している。 

次に、テストデータにおけるヒット率の推移を

図4に示す。まず、能動学習法DSとランダムとで

の得られる情報の差を示すために、能動学習法DS

で得た分類器と、ランダムに得たデータで作成し

た分類器とでの、テストデータにおけるヒット率

を検討した。ランダム選択では、データ数の増加

とともにゆるやかにヒット率は向上した。これは

データが多いほど得られる構造活性相関情報が

多いことを示している。なお、実際のランダムス

クリーニングは、ルールを生成しないので、2,000

でのテストデータのヒット率は常に1%未満であ

り、このランダム選択の高いヒット率は能動学習

法DSと同じ学習法を用いたためである。一方、能 
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図1. スクリーニングにおけるヒット率 

 

 

 

図2. テストデータにおけるヒット率 

 

動学習法DSはランダム選択より少ないデータの

段階で高いヒット率を得た。例えば、ランダム選

択の際の最終的なヒット率94%を、能動学習法DS

は約5万件のデータで達成した。これは、能動学

習法DSがデータ選択により構造活性相関情報を

効率よく取得したことを示す。 

 能動学習法DSと類縁化合物選択法のヒット率

の比較についても図4に示す。類縁化合物選択法

は、多くのデータを用いても約8割のヒット率に

しかならないのに対して、能動学習法DSは、9割

以上のヒット率を達成した。このように能動学習

法DSのヒット率が高いのは、類縁化合物選択法は

全体的な化合物の構造の類似度に基づいて予測 

 

 

 

図3. 他の手法とスクリーニングヒット率の比較 

 

 

 

図4. 他の手法とテストデータヒット率の比較 

 

するため全体的に類似しているが活性に関係す

る部分構造が無い化合物も選択するのに比べ、能

動学習法DSでは活性と相関する部分構造につい

てのルールに基づいて予測するためと考えられ

る。 

３) 生成された構造活性相関ルール 

記述子サンプリング法によって、生成される構

造活性相関ルールがどのように変化するかを図5

に示す。これは、最初の5,000データを学習した時

の100個の分類器中、最初の4個において、学習に

は用いなかったアドレナリン受容体リガンド1 

(図6)に対応するルールを示したものである。記

述子はfで始まる文字で示しており、Molskeyの場
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合、1はそのkeyあり、0はそのkeyなしを示す。ま

た、スコアは0～1の範囲を取り、1に近いほど正

例らしさが高いことを示す。図5で示すように、

記述子サンプリング法を用いないと、この時点で

分 類 に 重 要 と 計 算 さ れ る 記 述 子 f72 

(O-Any-Any-O)、f101 (8員環以上の環)、f19 (7員

環)を含むルールが生成され、これが化合物1を正

例と予測するのを妨げている。一方、記述子サン

プリング法では一部の記述子を無視するため、f72、

f101、f19を用いないルール((B)の4番目)が生成さ

れ、これにより化合物1を高いスコアで正例らし

いと予測することができる。 

まとめ 

 本研究では、記述子サンプリング法を用いるこ

とで能動学習法を改良し、大量の化合物群から少

数のヒット化合物を効率よく選抜する手法を開

発した。また、従来法である類縁化合物選択法よ

り高いヒット率を達成した。今後は、さらに活性

化合物が少ない場合について検討し、化合物選抜

法を確立していく予定である。 
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 (A)記述子サンプリング法なしの４ルール 

If f101=0 & f86=1 & f19=0 & f48=0 & fHbA>1 & f84=1 & f72=0 then score: 0.030 
If f19=0 & f100=1 & f101=0 & f72=0 & f108=0 then score: 0.001 
If f19=0 & f17=0 & f86=1 & f101=0 & f34=0 & f105=1 & f114=0 & f66=0 & f79=1 & 
fHbA>1 & f103=1 & f72=0 then score: 0.111 
If f100=1 & f17=0 & f101=0 & f72=0 & f19=0 & f108=0 & f74=0 then score: 0.001 
 (B)記述子サンプリング法ありの４ルール 

If f86=1 & f105=1 & f87=1 & f120=1 & f71=0 & f72=0 then score: 0.050 
If f19=0 & f100=1 & f101=0 & f137=1 & f17=0 & f159=1 then score: 0.002 
If f19=0 & f86=1 & f101=0 & f17=0 & f34=0 & f105=1 & f114=0 & f66=0 & f94=1 & 
fHbA>1.5 & f103=1 then score: 0.125 
If f100=1 & f113=1 & f115=0 & f84=1 & f74=0 & f134=1 & f8=0 then score: 0.800 

図 5. 構造活性相関ルールの例 
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図 6. 化合物 1 


