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1. はじめに 

近年、遺伝子の配列情報、それからコードされ

るタンパク質の構造情報は急速に増加している。

この情報を利用することによって、標的タンパク

質の三次元構造情報を基にしたハイスループット

なリード探索や活性部位の構造に基づく合理的な

薬剤設計が可能になってきた。その結果、分子標

的薬の様に、より効率的で、効果的な医薬品を研

究、開発することが出来るようになってきた。 

しかし、このように特異性を上げた分子標的薬

も含めて、既存薬剤の中には、生体内でどのタン

パク質にどのように作用しているかが明確に解明

されないままのものが多く存在するのが現状であ

る。分子標的薬であっても、生体内に存在する膨

大な種類の「非標的」タンパク質のそれぞれに対

してどのような作用を及ぼすかが実際に確認され

ているわけでは必ずしもない。そこで、我々はプ

ロテオーム規模に対するアプローチが薬剤の作用

メカニズムの解明や創薬において重要となってく

ると考えた。このようなアプローチについて、構

造プロテオミクス研究の進展によって、プロテオ

ーム規模での親和性フィンガープリンティングを

in silico で行うことが可能になりつつある。これは、

薬剤の作用メカニズムを分子レベルで解明する上 
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で有用であるばかりでなく、新規薬剤開発のため 

に有益な知見ももたらすと考えられる１）。そこで、

今回、タンパク質－薬剤間の分子間相互作用予測

を行うことで、このような親和性フィンガープリ

ンティングを in silico で行った。これらの結果を

もとに、新規薬理メカニズム検出における in silico

プロテオーム規模親和性フィンガープリンティン

グの可能性と意義について報告する。 

 

2. 材料及び方法 

2-1. 化合物データ 

MDDR (2002 年 9 月時点)中の 119,108 の薬剤か

ら、 

（1） 非水素原子数が 10 以上 35 以下 

（2） phase（開発段階）に関する注釈が phase 

I/II/III, launched のいずれか 

という条件を満たすものを選んだ。なお、MDDR エ

ントリ中には 2分子以上から構成される錯体も含

まれているが、（多くは H2O, HCl 等との「錯体」）、

その場合は、最も分子数の大きい構成分子のみを

取り出して、その非水素原子数を計算した。その

結果、2140 個の薬剤が抽出された。 
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2-2. タンパク質立体構造データ 

NCBIの nrpdb(2003年 4月 1日版)から、p-value

が 10e-80 レベルでのクラスター（配列が類似する

クラスター）の代表 7021 個の中から残基数が 100

以上かつ座標未定義原子を含む残基の割合が 5％

以下のヒトタンパク質を選んだ。その結果、561

個のタンパク質が抽出された。 

 

2-3. リガンド結合部位の定義 

561 個のタンパク質について、リガンド結合部

位を定義する際に、Ceriu2 LigandFit２）を用いた。

この LigandFit では、結合予測に用いるタンパク

質が化合物との複合体であった場合、”docked 

ligand”という機能を用いることで、その化合物

の形状、及び部位から結合部位をより厳密に定義

することができる。また、複合体ではない場

合、”protein shape”という機能を用いることで、

その表面構造を基に化合物の結合部位を複数予測

し、任意に定義することができる。そこで、今回

用いた 561 個のタンパク質について、これらの機

能を用いて、結合部位を定義した。その際、複合

体ではない場合、既知の報告等を参考にすること

で適当な結合部位を定義した。 

 

2-4. PC グリッドコンピューティングシステム

上での LigandFit による親和性予測 

用意したタンパク質と化合物について、親和性

を予測するために LigandFit を用いた。これらの

計算は PC グリッドコンピューティングシステム

(“cell computing”)を用いて、400 台の PC 上で

約 6ヶ月間行った。 

 

2-5. 相互作用既知のデータセットの作成 

今回用いた561個のタンパク質と2140個の化合

物の対について、相互作用することが報告されて

いる対があるかをデータベース等で検索した。 

参照データとして、MDDR に記載されている注釈、

The Merck Index、Therapeutic Target 

Database(TTD)３）のデータベース等を利用した。

集められたデータから今回の予測に関係する 84

件の相互作用既知データセットを作成した。 

 

3. 結果 

3-1. 親和性予測精度の検証 

今回行った予測の精度を確認するため、GOLD の

検証実験 4)に用いられた 100 個の既知複合体構造

のうち、座標未定義原子などを含まない 93 個の構

造を用いて検証を行った。予測結果の中から化合

物の構造を比較し、RMSD の値が一番小さいものを

それぞれの結果として選んだ。選んだ結果の RMSD

とその結果に対する pKi の予測値(LigScore2)を

プロットしたところ、結果の 80％は RMSD の値が

3.0 以下だった（図 1、上図）。 

今回、561 個のタンパク質と 2140 個の化合物に

ついて結合予測を行ったが、１つのタンパク質と

化合物の対について、結合予測の結果の上位から

5 つまでの予測結果が得られるように設定されて

いた。そこで、pKi の予測値（LigScore2）を指標

として値が一番高いものを選び、プロットしたと

ころ、結果の 60％が RMSD の値が 3.0 以下だった

(図 1、下図)。 

 

 

 

 

 

 

 

 

 

 

 

 

 

図 1 RMSD をもとに選んだコンフォメーション

（上）と LigScore2 をもとに選んだコンフォメー

ション（下）についての結果 
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薬剤：タンパク質全対 高親和性既知 

GOLD テストセット

3-2. 親和性既知のデータセットを用いた予測

精度の検証 

今回行った予測結果の信頼性を検討するために、

既知の相互作用についての予測結果と全予測結果 

をまとめた。それぞれの結果は図２のようになっ 

た（全体;mean=4.52, s.d. = 0.67, n = 1420640, 

高親和性既知; mean = 5.52, s.d. = 0.77, n = 84, 

Gold のテストセット; mean =5.66, s.d. = 1.31, 

n = 93）。 

 

 

 

 

 

 

 

 

 

図２ 結合予測値（LigScore2）を用いた検証 

 

3-3. タンパク質－薬剤間の新規相互作用の予

測 

タンパク質-薬剤間の結合予測値から親和性フ

ィンガープリントを作成した。このフィンガープ

リントにカットオフ値を設定し、それ以上の値で

あれば高親和性相互作用候補とみなし、タンパク

質と薬剤の相互作用について予測を行った。その

結果、カットオフのpKi値を6.4以上とした場合、

5827 個の高親和性相互作用予測候補が見つかっ

た。この結果について、さらに構造を確認してい

ったところ、いくつかの新規高親和性相互作用予

測候補となるようなものが見つかった。その中の

一例として、マトリックスメタロプロテアーゼ-9

（MMP-9）と FK633 があった。これは、予測された

親和性の値が高く（LigScore2=6.46）、既知の複合

体構造のペプチド鎖と良く重なるような結果であ

った。 

 

 

4. 考察 

今回行った予測結果について、GOLD のテストセ 

ットや相互作用既知のデータセットと比較した。

その結果、LigandFit によって行った今回の結合

予測によって真の相互作用を判別できている可能

性が期待された。そこで、作成した親和性フィン

ガープリントを用いることでいくつかの新規高親

和性相互作用予測候補を検出することが出来た。

その内、既知の複合体構造と良く重なるような結

果であったMMP-9とFK633相互作用候補について、

さらに薬理メカニズムについて検討した。 

FK633 という薬剤は”RGD”ペプチド配列を改

変して作られた gpIIb/IIIa のアンタゴニストで

ある。gpIIb/IIIa というのは血小板、巨核球系に

特異的に発現しており、機能としてフィブリノー

ゲンやフィブロネクチン、von Willebrand 因子の

レセプターとして働いている。FK633 のような

gpIIb/IIIa のアンタゴニストは血小板の凝集や

血小板粘着を阻害するため、抗血栓の治療等に応

用されている。マトリックスメタロプロテアーゼ

は血管新生、癌の浸潤･転移などのさまざまな現象

に関わっており、細胞外マトリックス（ECM）の分

解に関わっている。MMP-9 は MMP-2 とともにゼラ

チナーゼに分類される。gpIIb/IIIa は血小板の凝

集だけでなく、血管内皮細胞上のインテグリンで

あるαvβ3 との結合により、CD40L-CD40 の結合と

それに続く tPA, uPA, MMP-1, MMP-2,MMP-9 の発現

誘導をもたらすシグナル伝達経路を起動する 5)。

従って、FK633 等の gpIIb/IIIa 阻害剤は血小板凝

集の阻害だけでなく、このシグナル伝達経路の起

動をブロックすると考えられている。 

今回の予測は FK633 が上のシグナル伝達経路の

下流で MMP-9 を直接阻害する可能性を示唆してい

る。FK633 は MMP-9 を直接的に阻害することによ

って、gpIIb/IIIa だけを阻害するよりも、より効

果的にシグナル伝達経路を阻害している可能性が

考えられる。今のところ FK633 が MMP-9 に対して

直接的に阻害作用を示すことは報告されていない。

しかし、”RGD”ペプチド配列を改変して作られた
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gpIIb/IIIa のアンタゴニストである FC-336 につ

いては、濃度依存的に MMP-9 を直接阻害すること

がゼラチンザイモグラフィーを用いた研究によっ

て示唆されている 6)。 

 

5. 結論 

今回はテストケースということもあり、タンパ

ク質の数は制限されていたが、PC グリッドコンピ

ューティングを用いて in silico プロテオーム規模

親和性フィンガープリントを作成することが出来

た。それによって、in silico 親和性フィンガープリ

ンティングの有効性を確認することが出来た。ま

た、MMP-9 阻害作用などを含む新規の薬剤-タンパ

ク質相互作用候補を検出することが出来た。 

今回行った以外にも親和性フィンガープリント

を用いることによって、化合物のクラスタリング、

ファーマコフォアの探索など様々な応用も考えら

れ、現在検討中である。今後、親和性フィンガー

プリントを用いることによって、さらに創薬にお

ける新しい知見が得られると期待している。 
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