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1. はじめに 

アゾール化合物は農薬、殺菌薬、抗真菌薬とし

て幅広く広く利用されている．これらの化合物は、

真菌のチトクロム P450 (CYP) に対して強い阻害

作用を示し、真菌の細胞膜にラノステロールを蓄

積させ、細胞膜機能の維持に必要なエルゴステロ

ールを欠乏させる．CYP に対する阻害作用は、ア

ゾール化合物が有する求核性窒素原子が CYP の

ヘム鉄に配位することによるものである．このと

き、430 nm 付近に山、390 nm 付近に谷を持つ type

Ⅱ結合スペクトルが生じる 1)． TypeⅡスペクトル

はイミダゾール基やアミノ基などヘムに配位で

きる窒素原子を有する化合物で観察されるため、

CYP–アゾール化合物の相互作用を解析する上で

その変化は有用な情報を与える．本研究では、ア

ゾール化合物とラット CYP2B, CYP3A との結合

活性を type II スペクトル変化を用いて測定した．

さらに，CYP2B および CYP3A の各アゾール化合

物との結合活性値について、分子特性との関係か

ら考察を行った． 

2. 方法 

2-1. アゾール化合物 

 本研究で用いた化合物は、metconazole, 

uniconazole, tebuconazole, propiconazole,  

hexaconazole, flusilazole, cyproconazole, triadimenol, 

fluconazole, imibenconazole,  1-methy-1,2,4-triazole, 

clotrimazole, ketoconazole, miconazole, triflumizole, 

1-phenylimidazole, 1-methylimidazole, N- (n-butyl) 

imidazole である． 

  

 

2-2. 結合活性 
7週齢のWistar系雄性ラットにphenobarbital (PB, 

70 mg/kg i.p., 3 days) 、dexamethasone (DEX, 100 

mg/kg i.p., 4 days) を投与しそれぞれ CYP2B と

CYP3A を誘導させ、常法により肝ミクロソームを

調製した後、分光光度法により P450 含量を測定

した．1 mg/ml ミクロソーム懸濁液に 0.01～100 

µM のアゾール化合物を添加した後、自記分光光

度計で P450-基質結合差スペクトル測定を行った
2)． pKd (log(1/Kd)は Dixon プロットにより、pIC50s 

(log(1/IC50s)は type II スペクトルの飽和値の 50%

に対応する濃度(IC50s)表わし、EC50MV を用いて

IC50s を決定した 3)．  
2-3. 活性部位の比較 

 異なる CYP の活性部位を比較する目的で、

３次元構造既知の各種 CYP (ヒト CYP3A4, 2C9, 
ウサギ CYP2C5, Mycobacterium Tuberculosis 
CYP51, Bacillus megaterium CYP102)に
metyrapone (2-methyl-1, 2-di (3-pyridyl)-1- 
propanone)をドッキングさせ，metyrapone から

半径 5/7/9/11Åの残基の組成について検討した 4, 

5)．これらのモデリング結果と実験結果について

検討を行った． 
2-4. QSAR 解析式 

QSAR 解析において Biliniear Model， 

log (1/C) = a log P + b log (β P + 1) + const 
を用いた 6)． 

3. 結果と考察 

3-1. 化合物の疎水性と CYP 結合活性の相関 
CYP2B あるいは 3A とアゾール化合物の log P

と pKdの間には図 1に示すような関係が見られた．

これを QSAR 解析した結果，以下に示す回帰式を

         CYP2B および 3A とアゾール系化合物との結合
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得た[式 1-4]． 

【CYP2B】 

pIC50s = 1.124 (±0.157) log P – 1.348 (±0.242) log 

(β P + 1) + 0.302 (±0.221) Iazole + 2.921 

(±0.314) 

n = 18, r = 0.980, s = 0.209, F = 115, log β = – 2.42 
log Popt = 3.42                             [1] 

 

pKd = 1.124 (±0.140) log P – 1.265 (±0.224) log (β 

P + 1) + 0.297 (±0.210) Iazole + 3.022 (±

0.298) 

n = 18, r = 0.981, s = 0.198, F = 118, log β = –2.57 
log Popt = 3.47                             [2] 

 

【CYP3A】 

pIC50s = 1.144 (±0.112) log P – 1.394 (±0.195) log 

(β P + 1) + 0.211 (±0.189) Iazole + 3.270 

(±0.261) 

n = 16, r = 0.990, s = 0.169, F = 188, log β = –2.86 
log Popt = 3.49                             [3] 

 

pKd = 1.071 (±0.136) log P – 1.336 (±0.235) log (β 

P  + 1) + 0.262 (±0.227) Iazole + 3.210 (±

0.313) 

n = 16, r = 0.982, s = 0.204, F = 110, log β = –2.81 
log Popt = 3.42                             [4] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ここで Iazoleは indicator variable であり，化合物

がトリアゾール環を含む場合は 0 を，イミダゾー

ル環を含む場合は 1 をとる． 

式 1-4 から得られた log Poptはそれぞれ 3.4～3.5

であり，CYP2B と 3A にはそれぞれの最適 log P 

値 (log Popt)が存在し，この値を超えると化合物の

結合親和力が低下することになる． 

式1-4において，Iazoleの係数はすべて正であり，

それらの値は 0.2～0.3 である．このことから，イ

ミダゾール環はトリアゾール環よりもヘムに対

して 0.3～0.4 kcal/mol 高い結合配位エネルギーを

有することが示唆された．イミダゾールがトリア

ゾールよりエネルギーの高いπ−，σ−，HOMO を

もつことがその理由の一つとして考えられる． 
3-2. スペクトル強度 (∆Amax) と疎水性との相関 

CYP に対する結合スペクトルは二つに分類さ

れ，それぞれ typeⅠと typeⅡスペクトルと呼ば

れている．TypeⅠスペクトル変化はリガンドの疎

水部位が CYP の疎水性残基と相互作用するため

に生じ，390 nm 付近に山，420 nm 付近に谷を持

つ．一方，イミダゾール基やアミノ基などヘムに

配位できる窒素原子が結合すると 430 nm 付近に

山，390 nm 付近に谷を持つ typeⅡスペクトルが生

じる．スペクトル測定の結果得られた CYP2B と

3A に対する各化合物の∆Amax と log P と関係を，

図 2 に示した． 
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∆Amax は log P が増大するにしたがって，減少す

る傾向が見られた．この結果は化合物の疎水部位

が CYP の疎水性残基と相互作用した結果，type

Ⅰ結合スペクトルが生じて，typeⅡスペクトルと

重なり合ったためと考えられる．さらにイミダゾ

ールとトリアゾール化合物を比較すると，イミダ

ゾール系化合物のほうは∆Amax が大きく，イミダ

ゾール系化合物のほうがヘムへの配位がより強

いことを支持している．これは式[1-4]の indicator 

variable Iazole の係数が正であることからの推測と

合致する．また，CYP3A の∆Amax は CYP2B より

もわずかながら大きいことから，CYP3A のほうが

2B よりアゾール化合物と疎水性蛋白残基との相

互作用がやや小さいことが示唆された． 
3-3. 活性部位の比較 

図 3 に methyrapone から半径 7Åに存在する

CYP3A4 および CYP102 の基質および触媒活性ポ

ケットの構造を示した．CYP3A のほうがより広い

結合ポケットを有していることが推測される．さ

らに 5 種類の CYP(3A4, 2C9, 2C5, 51, 102)の

methyrapone から 5/7/9/11Å以内のアミノ酸残基の

組成について検討した結果，疎水性残基の割合が

どの距離においてもほぼ 6 割を超えていた (図 4)．

このことから各 CYP の触媒活性ポケットでは疎

水性残基の割合が高く，リガンドの疎水部位との

相互作用が重要となることが予想される．さらに

図 4 から CYP3A の結合ポケットの大きさが他の

CYP に比較して若干大きいことが示唆された． 

 

(b) 

(a) 

図 3.  CYP3A4 (a) および CYP102 (b)の活性

ポケット近傍 (metyrapone から半径 7
Å以内) の比較 

図2.  CYP2B (a)とCYP3A (b)に対する各化合物のlog Pと∆Amax
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4. まとめ 

本研究でCYP2BとCYP3Aに対する各アゾール

化合物の結合活性を測定した結果，すべての化合

物で typeⅡ結合スペクトルが観察された．モデリ

ングで 3A4 は他の CYP と比較して触媒活性ポケ

ットが大きいことが示唆されたが，本実験では

CYP2B および CYP3A との typeⅡ結合におけるア

ゾール化合物の log Poptはほぼ同じであった．これ

までに，基質の疎水性と CYP 酵素活性に関する

構造活性相関解析については幾つかの研究がな

されているが 7, 8)，いずれも解析対象化合物の log 

P 範囲が 0～5 付近であったため，得られた回帰式

は log P の 1 次式であった．本研究では，CYP と

アゾール化合物の typeⅡ結合には log Popt が存在

し，この値を超えると化合物の結合親和力が低下

することを明らかにした． 

 本実験で用いた PB誘導型ラットとDEX誘導

型ラットの肝ミクロソーム標品は，それぞれ

CYP2B および 3A を主成分として含むが，今後は

精製した CYP に対する各化合物の結合測定を行

う予定である． 
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図 4.  Metyrapone から各距離以内に存在するのアミノ酸残基の数と組成 
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