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1.はじめに 

近年、フラグメントに基づくリード創出が注目さ

れている 1,2。背景には、従来 HTS で使用されて

きたライブラリの問題点がある。たとえば、取り

こぼしなく化合物探索を行うためには、従来考え

られてきたよりも細かい網の目で、化合物空間を

網羅しなければならないことが指摘されている
3,4。また、HTS から得られるヒット化合物が、最

適化の余地の少ない分子量の大きな化合物であ

ることが多いことも度々論じられる。これらのこ

とから、drug-like な化合物を網羅的に探索しよう

とすることの限界が認識されるようになり、最適

化の余地を残した Lead-like な化合物 5や、フラグ

メントを探索する手法が求められている。 

一方、分子ドッキングに基づくバーチャルスクリ

ーニングは、方法論の進歩により既に実用段階に

入っている 6,7。しかし、結合様式や化合物の順位

付けに使用するスコア関数はまだ改善の余地が

多く、特に小さな化合物フラグメントの結合様式

や活性の有無を正確に予測することは現段階で

は困難である 8。また、一般にドッキングスコア

関数は大きな化合物ほど上位にランクする傾向

があり、これを補正するための方法が幾つか提案

されている 9,10。我々は、化合物フラグメントに基

づくバーチャルスクリーニングを実効あるもの

にするため、スコア関数の規格化とパラメータ最

適化の方法を開発した。 

2.理論及び方法 

スコア関数の分子サイズに対する依存性 

最初に、ドッキングスコア関数の分子の大きさに 

 

 

 

 

対する依存性の本質を理解するために、単純化し

たモデルを用いる。リガンドを長さ n、蛋白質の

リガンド結合部位を長さ m とし、0 又は 1 を要素

とする配列で表す(ただし m≧n)。これらの間のア

ライメントが結合様式に対応すると考える(図 1)。

リガンドと結合部位の間で、1 と 1 又は 0 と 0 が

対応するとき、スコアに-1 が加算されるものとす

る。このとき、長さ n のリガンドの種類(配列の数)

は 2nであり、このうち特定の結合部位に対して特

定の様式で結合したときにスコアが-x になるリ

ガンドの数は、二項分布 
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で与えられる。この分布は、n が無限大の極限と

相互作用の単位を細かくする極限で正規分布に

帰着し、平均、分散が共に n に比例する。これら

の性質は、相互作用のパターンが複雑になったり、

強さがまちまちな相互作用が混在する場合でも

共通である。そこで、化合物データベースをドッ

キングして得られるスコアの分布を、平均と分散

がそれぞれ化合物の大きさ(n)に対して線形とな

るような正規分布でモデル化することが、第一段

階としては妥当であると考えられる。ここで、n

に対応する化合物の大きさの尺度として、単に大

きさを表す分子量や原子数よりも、蛋白質と相互

作用しうる要素の数と強さを考慮した指標を用

いるのが適当である。そこで、今回はこの指標と
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して Andrews のスコアを用いる 11。Andrews のス

コアは、ターゲット横断的に QSAR 解析を行い、

化合物が持ちうる活性値を各化学基や原子の数

の重み付の和で表したものである。 

パラメータ最適化手法 

従来、経験的なドッキングスコア関数のパラメー

タ最適化の手法として、既知のタンパク質-リガン

ド複合体の活性データにスコア関数を一致させ

る、最小二乗法が多く用いられてきた。 

( )∑ −=
N

i
ii aS

N
22 1σ    (2) 

ここでSiは i番目の蛋白質-リガンド複合体データ

に対するスコア値、ai は i 番目の複合体のリガン

ドの活性、Νは用いる複合体データの数。最小二乗

法ではσ2 を最小化する。しかし、通常用いられるデー

タには多くの誤差や外れ値が含まれている。例えば、

リガンドの結合に伴って蛋白質の 4 次構造が変化す

る例(ストレプトアビジン-ビオチン複合体 12 等)での構

造変化に伴う自由エネルギー変化や、タンパク質の

プロトン化状態がリガンドによって異なる例(Hiv-1 プ

ロテアーゼ 13,14 等)でのプロトン化・脱プロトン化に伴う

自由エネルギー変化は、現在のドッキングスコア関数

には反映されていない。このようなことが実験的に詳

細に検討されている複合体はむしろ少数であり、使

用するデータからこのような例を除外したり、補正した

りすることは難しい。また、異なるアッセイ系で測定さ

れた活性値を同等に扱うことからも大きな誤差が生じ

る。このように多くの誤差を含むデータに対してスコア

関数を忠実にフィッティングすることは、本来避ける

べきである。そのために、ロバスト推定と呼ばれる、外

れ値を許す最適化手法が用いられることも多い。ここ

では、前節のスコア分布のモデルを用い、フラグメン

トの活性を予測するのに適した新しいスコア関数最

適化手法を導入する。 
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ここで、σ0 は定数とし、 (3)をパラメータ最適化

の束縛条件とする。Z は活性化合物の、スコア分

布中における位置を表す Z スコアの平均値で、今

回の最適化手法ではこれを最小化する。NActiveは Z

スコア最適化に用いる活性化合物の数、ui は i 番

目の活性化合物の Andrews のスコア。aui + b と

cui + d はそれぞれ、前節の分布モデルに従ったス

コア分布の平均と分散で、パラメータ a,b,c,d はデ

ータベース中の化合物のドッキング結果に基づ

いて、以下のような条件から決める。 
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P は分布パラメータ a,b,c,d を仮定したときの、デ

ータベース中の化合物群のスコアの出現確率を

表し、式(6)は P を最大化するように a,b,c,d を求め

る最尤法の条件である。式(3)～(5)に現れる Si が

それぞれスコアパラメータを含んでいるので、こ

れら全ての式を連立させて最適化を行う。計算手

法としては、ラグランジュの未定乗数法を用い、

式(3)と式(6)を束縛条件とし、式(4)の停留値を求

める。 

最適化に使用した複合体データ 

スコア-活性相関の条件式(3)には、以下の 4 つの

グループに属する 40 複合体を用いた。 

・HIV プロテアーゼ 

・トリプシン、トロンビン 

・ノイラミニダーゼ 

・ サーモライシン 

Z スコア最適化には、以下の 4 つのタンパク質と

既知リガンドとの複合体と、市販の drug-like な化

合物から多様性を考慮して抽出した 1000 化合物

をドッキングした結果を用いた。 

・ プロテインチロシンフォスファターゼ 1B 

・ ウロキナーゼ 

・ メチル基転移酵素 ErmC’ 

・ ストロメライシン(MMP-3) 
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活性化合物としては、既知の阻害剤に加えて、NMR

又は X-線結晶解析によって同定された弱い活性

を持つフラグメントを用いた 15-21。 

スコア関数形 

ドッキングスコアには、ファン・デル・ワールス

項、水素結合項、簡略化した GB/SA 項 22、回転結

合数を含む関数形を用いた。水素結合項には、一

般的な強い水素結合の他に、ハロゲンやπ電子が

関わる弱い水素結合も含め、水素結合距離などの

パラメータは文献 23,24に記載された実験データか

ら決めた。 

3.結果及び考察 

図 2 に、パラメータ最適化の結果を示す。A,B は、

40 個の既知複合体データを用いて、最小二乗法で

スコア活性相関だけを最適化したもので、相関係

数 0.97 の高い相関が得られた(図 2A)。しかし、デ

ータベース化合物と活性化合物との分離は悪か

った(図 2B)。特に、比較的小さい分子について、

False-Positive が多数現れている。これに対して

C,D は、ラグランジュの未定乗数法を用いて、ス

コア-活性相関と Z-スコアの両方を最適化した結

果を示している。相関は悪くなっているが、デー

タベース化合物と活性化合物との分離は大幅に

改善されている。また、E,F は Z-スコア最適化の

際にウロキナーゼのデータを除いて行ったバリ

デーションの結果を示している。F はこの結果得

られたパラメータを用いて、ウロキナーゼに対し

て活性を持つ化合物とデータベース化合物との

分離の様子を示したもので、D と同様の傾向を持

つことからこの方法の安定性が示された。 

この方法で求められる各化合物の Z スコア 
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を化合物選択の基準にすると、同程度の Andrews

のスコアを持つ化合物群の中で、特にあるターゲ

ットに対して特異的に結合する化合物を選ぶこ

とができる。そこでこの Z スコアを特異性スコア

と呼ぶことにする。 

この方法の利点として、以下のような点が挙げら

れる。 

・ 分子量が小さく最適化の余地がある Lead-like

な化合物や、フラグメントの探索に適してい

る。 

・ 活性値に対してだけフィッティングする従来

の手法に比べて、活性化合物と不活性化合物

の分離というバーチャルスクリーニングの目

的に即した関数となり、False-Positive が減少

する。 

・ 誤差を含む活性データに対して過度にフィッ

ティングすることが避けられる。 

フラグメントのドッキングと、それに基づいたリ

ード設計の検証例についても報告する。 
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