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はじめに 
創薬の研究開発は化学・生物学を中心とし、多種

の関連分野の知識を必要とする。近年の構造ゲノミ

クス及び計算（機）科学より得られる大量の情報の

整理・解析は創薬の研究開発をより効率的にすると

期待されている。我々のプロジェクト「g-drug 
discovery」は、Grid テクノロジーや XML データベ

ースなどの新しい IT 技術を活用し、従来の定量的構

造活性相関解析と大規模分子科学計算・シミュレー

ション・構造ゲノミクスからの情報を統合し、創薬

に関する情報の解析と知識獲得のためのプラットフ

ォームの構築を目指している（図 1）。このプラット

フォーム上では、様々な計算科学ソフトウェアが、3
次元分子構造データベースを介してシームレスに接

続することが可能となる。今回の発表においては、

この創薬プラットフォームの概要及びその有効性を

実験により確かめた結果について発表をおこないた

い。 
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図 1．創薬プラットフォームの全体像  Grid 環境は

OmniRPC（後述）にもとづき構築されている。また、

データベースにはネイティブ XML データベースを用

いている。 
 

DrugML（Drug Markup Language） 
 創薬プラットフォーム上で様々なアプリケーショ

ンが連携を行うためには、アプリケーションの間で

共通のデータ構造が必要となる。近年 XML
（eXtensible Markup Language）の隆盛により、様々

な分野で、このようなアプリケーション間の共通の

データ構造としてマークアップ言語が用いられてき

ている。そして、化学分野においては化合物の構造

からスペクトル等の実験情報までを間便に記述可能

な CML（Chemical Markup Language）1) が広く利用

されている。本研究においては、この CML を出来

る限り利用し、創薬のためのマークアップ言語

DrugML を開発した。DrugML の主要な構造を図 2
に示す。DrugML では CML には存在しない、以下

の概念（タグ）を新たに追加した。 
 

 universe : 複数の分子のスナップショットを表

す。これを用いることにより、例えば結合して

いるレセプターとリガンドの状態を表現する

ことが可能となる。 
 conformation : 分子の「配座」を表す。CML に

おいては、分子を構成する各原子の座標情報を

表すことはできるが、「配座」という概念は明

確になっていない。このタグを用いることによ

り、1 つの分子に対して計算で求めた多数の安

定配座を効率的に記述することが可能となっ

ている｡ 
 descriptor : 分子の様々な記述子を表す。記述子

は、分子の 1 次元・2 次元・3 次元構造に依存

するものを、それぞれ別々に記述する。記述子

の数値データは、CML の scalar・array・matrix
タグを用いて表す。 
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図 2．DrugML の構造 
 

XML データベースを用いた創薬のためのデ

ータベースシステム 
 創薬プラット

フォームの中心

に位置し、アプ

リケーション間

のシームレスな

接続を可能とす

るデータベース

システムを開発

した。本データベースシステムは、前述した DrugML
をデータ構造として採用している。そのため、デー

タベース自体は、リレーショナルデータベースでは

なく、XML ネイティブなデータベースを使用する

ことにした。アプリケーション、スキーマ（データ

構造）、データベース操作のための API、データベー

スへの接続方法を切り分けたフレームワークとなっ

ている。また、まだ確立された共通仕様が存在しな

いクエリ言語や接続方法などの違いを吸収可能な設

計となっている（図 4）。 
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OmniRPC 
 本プラットフォームの Grid 環境は OmniRPC に基

づいて構築されている。OmniRPC はプロジェクト内

の共同研究者である筑波大学の佐藤三久教授らによ

り開発された GridRPC システムであり、以下の特徴

を有する 2,3,4)。 
 プログラミングモデルとして、master-slave 型の

並列プログラミングをサポーする。 
 利用する計算資源として、単一の PC やワーク

ステーションはもちろんのこと、クラスタを利

用することが可能である。クラスタを構成する

ネットワークとしてプライベートなアドレス

を用いて構成されたクラスタについてもサポ

ートしている。  
 API として、基本的に Ninf  version.1 の API を

踏襲している。また、リモート側の状態を保持

する persistency をサポートしているため、これ

を利用した効率的なプログラミングが可能で

ある。現在のバージョンでは C 言語の API を提

供している。  
 並列プログラミングのための API としては、非

同期呼び出しを用いることができる。 
 パラメータ検索など並列アプリケーションを

効率的にサポートするために、自動初期化実行

モジュール機能を提供している。これは、初期

化のための大量のデータの転送や計算が必要

な場合、これを再利用することにより、効率化

する機能である。  
 認証を行う Grid 環境として、Globus の他、ssh

の利用も可能である。ファイヤウォールのある

遠隔の計算機についても、omrpc-agent による

proxy 機能を用いることにより、ssh で login で

きるシステムならば、計算資源として利用でき

る。 
 
応用 1 （Docking 計算） 
【概要】OmniRPC による、Grid 化の性能を測定す

るために、Grid 化した薬師（Xsi） 8)（これを Xsi-G
と呼んでいる）を用いて、HIV プロテアーゼとその

阻害剤（今回は viracept を用いた）の複合体の構造

を再現した。ここで阻害剤の 3 次元構造は未知と仮

定した。 

図 3 DrugML in DB 
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【手法】計算フローを図 5 に示す。WHIM 記述子 6,7)

を用いて、バインディングサイトとリガンドの向き

を合わせて、Grid により Docking 計算を行っている。 
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図 5 計算フロー 

 
【結果】計算した結果のリガンドの構造の中で、実

験の構造に最も近かったものを図 7 に示す。このと

きの RMSD 値は 1.77Åであった。また、Grid 計算を

行うことにより、72CPU で約 67 倍の高速化が得ら

れた（図 6）。 
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図 6. Grid 計算によるスピードアップ 括弧の中の数

字はCPU 数を表す 

 

図 7. 計算で得られた viraceptとHIVプロテアーゼの

複合体（左）、実験で得られた構造とと計算で得られた

構造の比較（RMSD 1.7Å）（右） 
 
応用 2（リガンドアラインメントを用いたバ

ーチャルスクリーニング） 
【概要】創薬プラットフォームの全体的な有効性を

確かめるために、上述のデータベースに格納された

888 個のリガンドから、5 つの HIV プロテアーゼ阻

害剤（図 8）のスクリーニングを行った。 

 
図 8．HIV プロテアーゼ阻害剤 

 
【手法】上述のプラットフォーム上で、Xsi に実装

されている、リガンドアラインメントモジュールを

用いて計算を行った（図 9）。リガンドアラインメン

トとは、以下のような機能を有するものである： 
 

 リガンド間相同性指標の作成および適合度計

算 : グリッドの各格子点に割り当てられた単

独あるいは複数分子の特性情報から、LBDD 用

モジュールで用いられる各種情報解析機能を

用いて、リガンド間相同性指標を作成する。ま

た、任意のリガンドについて座標データが与え

られた時、リガンド間相同性指標に対する適合

度を計算する。 
 最適解探索 : 上記グリッド内において、リガン

ドの位置、向きおよび配座を任意に変化させ、

“標的蛋白質との結合自由エネルギー”と“リ

ガンド間相同性指標に対する適合度”のいずれ

かあるいは双方について、最適解を探索する。

適合度関数には以下のものを用いた。

t t 0 interaction 1 internal 0
t=type

( )A c S c E c E Eε= + + −∑
ここで、Stはファーマコファタイプの similarity
（Euclid, Cosine, Tanimoto）、Einteractionは分子間相
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互作用のエネルギー、Einternal は分子の内部エネ

ルギー、E0は内部エネルギーの原点（真空中で

の最小エネルギー）、ct・c0・c1 は重み定数をそ

れぞれ表す。 
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図 9．計算フロー 

 
【結果】5 つの HIV プロテアーゼ阻害剤が低ランク

（すなわち結合活性が高いと予測）に集中している

（図 10）。計算時間は 40CPU（Grid）で約 320 分で

あった。図 11 は阻害剤の一つとマップと間の最適な

アラインメントを示している。マップからはみ出し

ている部分は HIV プロテアーゼの外側となってい

る。 
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図 10．バーチャルスクリーニングの結果 
 

 

図 11．Binding サイトと阻害剤の最適アラインメント 
 

まとめ 
本研究では、Grid技術と最新のXML技術を用いて、

創薬の研究開発を効率化する創薬プラットフォーム

を構築した｡また、その有用性を、実際に計算を行う

ことによって確かめた。 
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