ls_matrix.eq1.gif元連立1次方程式はls_matrix.eq2.gifの行列を使って以下のように表される.

ls_matrix.eq3.gif

ここで,ls_matrix.eq4.gifは係数項,ls_matrix.eq5.gifは定数項である. ベクトル表記で表すと,

ls_matrix.eq6.gif

となる.

連立1次方程式はクラメルの公式(Cramer's fomula)で理論的に解くことができる. ls_matrix.eq7.gifに逆行列が存在するならば,上記の式は,

ls_matrix.eq8.gif

と解くことができる. 逆行列ls_matrix.eq9.gifは余因子行列ls_matrix.eq10.gifを用いると,

ls_matrix.eq11.gif

ここでls_matrix.eq12.gifls_matrix.eq7.gifの行列式(determinant)であり,ls_matrix.eq13.gifでなければならない. また,余因子行列ls_matrix.eq10.gifは,

ls_matrix.eq14.gif

の要素で構成される.ここで,ls_matrix.eq15.gifls_matrix.eq7.gifls_matrix.eq16.gifls_matrix.eq17.gif列を除いたls_matrix.eq18.gif の行列の行列式である.

この余因子行列を使った逆行列の式を代入する.

ls_matrix.eq19.gif

よって,

ls_matrix.eq20.gif

により各未知数ls_matrix.eq21.gifを求めることができる. さらに,右辺のls_matrix.eq22.gifの項はls_matrix.eq7.gifls_matrix.eq17.gif列目を\V{b}で置き換えた行列の行列式に等しいことから,

ls_matrix.eq23.gif

となる.これがクラメルの公式である.

クラメルの公式を用いた際の演算回数はls_matrix.eq24.gifとなり,非常に大きい. 行列のサイズが小さい時やこれから述べる数値解法で得られた解をチェックする際には有用であるが, 行列のサイズが非常に大きくなりがちな実際の問題に当てはめるのは難しい. そこで数値解法により近似的に解く方法を説明する.


添付ファイル: filels_matrix.eq17.gif 373件 [詳細] filels_matrix.eq12.gif 428件 [詳細] filels_matrix.eq11.gif 433件 [詳細] filels_matrix.eq21.gif 413件 [詳細] filels_matrix.eq3.gif 419件 [詳細] filels_matrix.eq4.gif 372件 [詳細] filels_matrix.eq1.gif 412件 [詳細] filels_matrix.eq24.gif 373件 [詳細] filels_matrix.eq22.gif 397件 [詳細] filels_matrix.eq23.gif 363件 [詳細] filels_matrix.eq5.gif 409件 [詳細] filels_matrix.eq8.gif 400件 [詳細] filels_matrix.eq14.gif 361件 [詳細] filels_matrix.eq16.gif 352件 [詳細] filels_matrix.eq15.gif 396件 [詳細] filels_matrix.eq10.gif 412件 [詳細] filels_matrix.eq18.gif 396件 [詳細] filels_matrix.eq2.gif 398件 [詳細] filels_matrix.eq20.gif 399件 [詳細] filels_matrix.eq6.gif 378件 [詳細] filels_matrix.eq9.gif 385件 [詳細] filels_matrix.eq13.gif 381件 [詳細] filels_matrix.eq19.gif 363件 [詳細] filels_matrix.eq7.gif 354件 [詳細]

トップ   編集 凍結 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS
Last-modified: 2012-06-26 (火) 19:03:24 (3009d)