
A Parallel Bisection and Inverse Iteration Solver
for a Subset of Eigenpairs of Symmetric Band
Matrices

Hiroyuki Ishigami, Hidehiko Hasegawa, Kinji Kimura, and Yoshimasa Nakamura

Abstract The tridiagonalization and its back-transformation for computing eigen-
pairs of real symmetric dense matrices are known to be the bottleneck of the exe-
cution time in parallel processing owing to the communication cost and the number
of floating-point operations. To overcome this problem, we focus on real symmetric
band eigensolvers proposed by Gupta and Murata since their eigensolvers are com-
posed of the bisection and inverse iteration algorithms and do not include neither
the tridiagonalization of real symmetric band matrices nor its back-transformation.
In this paper, the following parallel solver for computing a subset of eigenpairs of
real symmetric band matrices is proposed on the basis of Murata’s eigensolver: the
desired eigenvalues of the target band matrices are computed directly by using par-
allel Murata’s bisection algorithm. The corresponding eigenvectors are computed
by using block inverse iteration algorithm with reorthogonalization, which can be
parallelized with lower communication cost than the inverse iteration algorithm.
Numerical experiments on shared-memory multi-core processors show that the pro-
posed eigensolver is faster than the conventional solvers.

Hiroyuki Ishigami
Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto-shi, Ky-
oto, Japan, e-mail: hishigami@amp.i.kyoto-u.ac.jp
Present affiliation: Yahoo Japan Corporation, Akasaka 9-7-1, Minato-ku, Tokyo, Japan, e-mail:
hishigam@yahoo-corp.jp

Hidehiko Hasegawa
Faculty of Library, Information and Media Science, University of Tsukuba, Kasuga 1-2, Tsukuba,
e-mail: hasegawa@slis.tsukuba.ac.jp

Kinji Kimura
Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto-shi, Ky-
oto, Japan, e-mail: kkimur@amp.i.kyoto-u.ac.jp

Yoshimasa Nakamura
Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto-shi, Ky-
oto, Japan, e-mail: ynaka@i.kyoto-u.ac.jp

1

2 Hiroyuki Ishigami, Hidehiko Hasegawa, Kinji Kimura, and Yoshimasa Nakamura

1 Introduction

A subset of eigenpairs of a real symmetric matrix, i.e. eigenvalues and the cor-
responding eigenvectors, is required in several applications, such as the vibration
analysis, the molecular orbital computation, and the kernel principal component
analysis. As the scale of the problems appearing in such applications becomes sig-
nificantly larger, the parallel processing is crucial for reducing the overall execution
time. As a result, there has been an increase in the demand for highly scalable algo-
rithms for computing a subset of the eigenpairs in parallel processing.

Let us consider computing a subset of eigenpairs of a real symmetric dense ma-
trix on the basis of the orthogonal similarity transformations. In general cases, the
eigenpairs of the target symmetric matrix are computed through the following three
phases: The first phase is tridiagonalization, which is to reduce the target matrix to
symmetric tridiagonal form by orthogonal similarity transformations. The second
phase is to compute eigenpairs of the symmetric tridiagonal matrix. The last phase
is back-transformation, which is to compute the eigenvectors of the original matrix
from the computed eigenvectors of the symmetric tridiagonal matrix by using the
orthogonal transformations generated for the first phase.

The following two-step framework [7, 8] is widely used for the tridiagonaliza-
tion: The first step is to reduce the symmetric dense matrix to symmetric band form
and the second step is to reduce the symmetric band matrix to symmetric tridiag-
onal form. Several efficient parallel algorithms based on this framework has been
proposed in [2, 3, 4, 7, 17], etc. However, it is pointed out in [4] that the band re-
duction in the second step and its corresponding back-transformation remains to be
the bottleneck of the overall execution time in massively parallel processing if the
eigenvectors are required.

To overcome the problem in the tridiagonalization and the corresponding back-
transformation, the authors consider not reducing a real symmetric band matrix to
the tridiagonal form, but directly computing the eigenpairs of the real symmetric
band matrix. The bisection and inverse iteration algorithms [6] for real symmetric
band matrices can be used for this purpose. It is to be noted that the bisection al-
gorithm can compute the desired eigenvalues of the target matrices and the inverse
iteration algorithm gives the corresponding eigenvectors. Their implementation for
real symmetric band matrices is proposed in [12, 20]. As shown in numerical results
on Section 4.1, the bisection algorithm proposed in [20] is faster than that proposed
in [12]. Let us name the algorithm in [12] Gupta’s bisection algorithm and that
in [20] Murata’s bisection algorithm, respectively. The inverse iteration algorithm
with reorthogonalization is used for computing the corresponding eigenvectors both
in [12, 20].

In this paper, the authors propose the following parallel algorithm for comput-
ing desired eigenpairs of real symmetric band matrices: the desired eigenvalues are
computed by using the parallel implementation of Murata’s bisection algorithm and
the corresponding eigenvectors are computed by using block inverse iteration al-
gorithm with reorthogonalization (BIR algorithm) [14], which is a variant of the
inverse iteration algorithm with reorthogonalization. Then, the performance of the

3

proposed methods is evaluated through numerical experiments on shared-memory
multi-core processors.

The rest of this paper is organized as follows. Section 2 gives a review of the bi-
section algorithms for computing eigenvalues of real symmetric band matrices pro-
posed in [12, 20], and then shows their parallel implementation for shared-memory
multi-core processors. Section 3 shows the inverse iteration algorithm with reorthog-
onalization and the BIR algorithm for computing eigenvectors of real symmetric
band matrices, and then shows their parallel implementation for shared-memory
multi-core processors. Section 4 shows results of numerical experiments on shared-
memory multi-core processors to evaluate the performance of the proposed parallel
algorithm, which computes eigenvalues of target matrices by using parallel Murata’s
bisection algorithm and computes the corresponding eigenvectors by using the BIR
algorithm. We end with conclusions and future work in Section 5.

2 Eigenvalue Computation of Symmetric Band Matrices

The bisection algorithm [6] computes the desired eigenvalues of a real symmetric
matrix by updating repeatedly the half-open intervals (µL,µR]. The computation
of ν(µ) is required for updating the intervals, where µ is a value in the intervals
(µL,µR] and ν(µ) is the number of eigenvalues of the target matrix that are less
than µ , and is the most time-consuming part of the bisection algorithm.

In this section, we introduce Gupta’s bisection algorithm [12] and Murata’s bisec-
tion algorithm [20] for computing the desired eigenvalues of a real n×n symmetric
band matrix B with half-bandwidth w and then show a parallel implementation of
them. These two algorithms differ in the computation of ν(µ).

2.1 Gupta’s Bisection Algorithm

Gupta’s bisection algorithm employs Martin-Wilkinson’s Gaussian elimination [19]
for computing ν(µ).

The computation of ν(µ) by employing Martin-Wilkinson’s Gaussian elimina-
tion is based on Sturm’s theorem [21]. In this case, all the principal minor deter-
minant of B−µI is required. Martin-Wilkinson’s Gaussian elimination is adequate
for this purpose since economical partial pivoting strategy is implemented to it from
the viewpoint of both the numerical stability and the number of floating-point op-
erations. Note that the number of floating-point operations in Martin-Wilkinson’s
Gaussian elimination is O(w2n).

Martin-Wilkinson’s Gaussian elimination is mainly composed of the BLAS (Ba-
sic Linear Algebra Subprograms [9]) 1 routines such as vector operations. Whenever
the partial pivoting occurs in Martin-Wilkinson’s Gaussian elimination, the number
of floating-point operations increases and, moreover, a pattern of the data access

4 Hiroyuki Ishigami, Hidehiko Hasegawa, Kinji Kimura, and Yoshimasa Nakamura

changes. As a result, Gupta’s bisection algorithm is difficult to achieve a high per-
formance from the viewpoint of data reusability.

2.2 Murata’s Bisection Algorithm

Murata’s bisection algorithm [20] employs not only Martin-Wilkinson’s Gaussian
elimination but also the LU factorization without pivoting for computing ν(µ).

The computation of ν(µ) by employing the LU factorization without pivoting is
based on Sylvester’s law of inertia [21]. In this case, we consider a LU factorization
without pivoting B−µI = LU , where L is an n×n lower triangular matrix with lower
bandwidth w and U is an n× n unit upper triangular matrix with upper bandwidth
w. On the basis of Sylvester’s law of inertia, ν(µ) is equivalent to the number of
negative values in diagonal elements of L.

The number of floating-point operations in Martin-Wilkinson’s Gaussian elimi-
nation is about 3 times higher than that in the LU factorization without pivoting. In
addition, the cache hit ratio of the LU factorization without pivoting is higher than
that of Martin-Wilkinson’s Gaussian elimination owing to absence of any pivoting.
However, owing to both the rounding errors and the absence of any pivoting, the
LU factorization without pivoting sometimes fails or the resulting elements of this
factorization may be not correct even if accomplished.

As a result, Murata’s bisection algorithm computes ν(µ) in the following way:
In the early stage of computing eigenvalues of B, Murata’s bisection algorithm em-
ploys the LU factorization without pivoting for computing rapidly ν(µ). In addi-
tion, if µ is significantly close to a certain eigenvalue, Murata’s bisection algorithm
employs Martin-Wilkinson’s Gaussian elimination for computing accurately ν(µ).
Consequently, Murata’s bisection algorithm is expected to be faster than Gupta’s
algorithm for computing the desired eigenvalues of B.

The several acceleration techniques for the LU factorization algorithm has been
proposed. As shown in [13], the optimal implementation for vector processors is
implemented to the LU factorization without pivoting and the overall execution time
for Murata’s bisection algorithm becomes shorter. On recent scalar processors with
the large cache, the LU factorization had better to be implemented using the block
algorithm for enforcing higher cache hit ratio. Hence, in this paper, the block LU
factorization of real symmetric band matrices is introduced into Murata’s bisection
algorithm for the purpose of improving further its performance on shared-memory
multi-core processors.

2.3 Parallel Implementation of Bisection Algorithm

In this paper, Murata’s and Gupta’s bisection algorithms are implemented on the
basis of the dstebz routine [15], which is provided in LAPACK (Linear Algebra

5

Algorithm 1 Parallel Bisection Algorithm for Symmetric Band Matrices
1: function PARALLELBANDBISECTION(B, `)
2: Set µL

1 ,µ
R
1 . Use Gerschgorin theorem, etc.

3: kb := 1,ke := 1
4: repeat
5: !$omp parallel do private(µk)
6: do k := kb to ke . ke ≤ `
7: µk := (µL

k +µR
k)/2

8: Compute νB(µk)
9: end do

10: Update the intervals µL
k ,µ

R
k for k = kb, . . . ,ke and the indices kb, ke

11: until All of the desired eigenvalues meets the stopping criteria
12: return λ̃k := (µL

k +µR
k)/2 for k = 1, . . . , `

13: end function

PACKage [1]) and computes the desired eigenvalues of real symmetric tridiagonal
matrices. A pseudocode of their parallel implementation is shown in Algorithm 1,
where ` is the number of the desired eigenvalues.

The computation of ν(µk) on line 8 is applied different algorithms for Murata’s
and Gupta’s bisection algorithm as mentioned in Section 2.1 and 2.2, respectively.
In addition, the computation of ν(µk) is performed in parallel with respect to each
search point µk by employing the OpenMP directive shown in line 5.

Note that an initial interval µL
1 and µR

1 are set on line 2. µL
1 and µR

1 are, at first,
set as the lower and upper bounds derived from Gerschgorin theorem [11] and then
are refined by the iterative computation of ν(µL

1) and ν(µR
1) in the same way as

shown on lines 7 and 8. Moreover, several criteria are designed for stopping the
binary search (a repeat-until iteration on lines 4 to 11) in the dstebz routine and
its subroutine dlaebz and we apply the modified criteria on line 11 for computing
eigenvalues of B. For more details, see the dstebz and dlaebz routines [15].

Note that the above-mentioned parallel bisection algorithm requires the work-
ing memory for computing ν(µ) independently on each computation thread. The
amount of the working memory for Martin-Wilkinson’s Gaussian elimination is
(3w+ 1)n per a computation thread and is larger than that for the block LU fac-
torization. Thus, we have to spend about t(3w+1)n working memory for perform-
ing parallel Murata’s and Gupta’s bisection algorithm, where t is the number of the
computation threads.

3 Eigenvector Computation of Symmetric Band Matrices

The inverse iteration algorithm with reorthogonalization is used in [12, 20] for com-
puting the eigenvectors of a real symmetric band matrix B. In this section, we con-
sider applying block inverse iteration algorithm with reorthogonalization (BIR al-
gorithm) [14] for computing the eigenvectors of B, which is a variant of the inverse
iteration algorithm with reorthogonalization.

6 Hiroyuki Ishigami, Hidehiko Hasegawa, Kinji Kimura, and Yoshimasa Nakamura

3.1 Inverse Iteration Algorithm with Reorthogonalization

We first introduce the inverse iteration with reorthogonalization for computing the
eigenvectors of B. In the followings, let λk be an eigenvalue of the target matrix
such that λ1 ≥ λ2 ≥ ·· · ≥ λ` (` ≤ n) and qk be the corresponding eigenvector to
λk, respectively. Moreover, let λ̃k be an approximate value of λk, obtained by some
eigenvalue computation algorithm such as the bisection algorithm, and v(0)k be a
starting vector for k = 1, . . . , `. Then the inverse iteration is to generate a sequence
of vectors v(i)k by solving iteratively the following linear equation:(

B− λ̃kI
)

v(i)k = v(i−1)
k , i = 1, 2, . . . , (1)

where I is the n×n identity matrix. If |λ̃k−λk| � |λ̃ j−λk| for j 6= k is satisfied, v(i)k
converges to qk as i→ ∞.

If some of the eigenvalues are very close to one another, we must reorthogonal-
ize all the corresponding eigenvectors to these eigenvalues. Hereafter, such eigen-
values are referred to as clustered eigenvalues. Peters-Wilkinson’s criterion [22] is
applied in dstein [15], which is a LAPACK routine for computing eigenvectors
of a real symmetric tridiagonal matrix T , as dividing eigenvalues of T into clusters.
In Peters-Wilkinson’s criterion, λk−1 and λk are regarded as belonging to the same
cluster if |λ̃k−1− λ̃k| ≤ 10−3‖T‖1 is satisfied (2≤ k≤ `). In the followings, we also
use Peters-Wilkinson’s criterion for dividing eigenvalues of a real symmetric band
matrix B into clusters. However, ‖B‖1(= ‖B‖∞) is not adequate to use in this crite-
rion since ‖B‖1 becomes significantly large according to w, the half-bandwidth of
B. To the contrary, since ‖B‖2 satisfies

‖B‖2 = sup
x∈Rn

‖Bx‖2

‖x‖2
≥max

i
|λi|, (2)

a good lower bound of ‖B‖2 is obtained by max(λ̃1, λ̃n), where both λ̃1 and λ̃n do
not depend on w. Thus, in this paper, Peters-Wilkinson’s criterion for computing the
eigenvectors of B is designed by using λ̃1 and λ̃n.

Algorithm 2 shows a pseudocode of the inverse iteration algorithm with reorthog-
onalization for computing the ` eigenvectors of B and is designed on the basis of the
dstein routine. As well as the dstein, the modified Gram-Schmidt (MGS) al-
gorithm [11] is applied to the reorthogonalization part on line 11. On line 10, Peters-
Wilkinson’s criterion with the above-mentioned modification is applied for dividing
eigenvalues of B into clusters. For solving the linear equation (1), we once perform
the LU factorization with the partial pivoting (PLU factorization) of B− λ̃kI by em-
ploying the dgbtrf routine (line 5), and then iteratively obtain v(i)k by employing
the dgbtrs routine (line 9). Note that both dgbtrf and dgbtrs routines are pro-
vided in LAPACK. The dgbtrf routine is implemented on the basis of the block
algorithm of the PLU factorization and is composed of the BLAS 2 and 3 routines.
In addition, the dgbtrs routine is mainly composed of the BLAS 2 routines and

7

Algorithm 2 Inverse Iteration Algorithm with Reorthogonalization for Symmetric
Band Matrices
1: function BANDINV(B, `, λ̃1, . . . , λ̃`)
2: do k := 1 to `
3: i := 0
4: Generate an initial random vector: v(0)k
5: LU factorization with partial pivoting: B− λ̃k = PkLkUk . Call dgbtrf
6: repeat
7: i := i+1
8: Normalize v(i−1)

k to q(i−1)
k

9: Solve PkLkUkv(i)k = q(i−1)
k . Call dgbtrs

10: if k > 1 and |λ̃k−1− λ̃k| ≤ 10−3×max(|λ̃1|, |λ̃n|), then
11: Reorthogonalize v(i)k to q(i)k by employing MGS algorithm
12: else
13: k1 := k
14: end if
15: until some condition is met.
16: Normalize v(i)k to q(i)k

17: Qk :=
[
Qk−1 q(i)k

]
18: end do
19: return Q` =

[
q1 · · · q`

]
20: end function

requires Pk, Lk, and Uk, which are the resulting elements of the PLU factorization
by the dgbtrf routine. For this purpose, we have to store Pk, Lk, and Uk in the
working memory and their amount is about (3w+1)n.

In this paper, let us consider that the inverse iteration algorithm with reorthogo-
nalization is parallelized by employing the parallel BLAS routines.

3.2 Block Inverse Iteration Algorithm with Reorthogonalization

A pseudocode of the block inverse iteration algorithm with reorthogonalization (BIR
algorithm) for computing the corresponding eigenvectors to the clustered eigenval-
ues of B is shown in Algorithm 3, where ˆ̀ is the number of eigenvalues belonging to
a certain cluster and r is a block parameter determined arbitrarily by users (r ≤ ˆ̀).
For convenience, we assume the r is a divisor of ˆ̀. Note that the BIR algorithm cor-
responds to the inverse iteration algorithm with reorthogonalization in Algorithm 2
if r = 1.

The BIR algorithm is composed of two parts as well as the inverse iteration al-
gorithm with reorthogonalization. The one is to solve r linear equations simulta-
neously. For this part, the dgbtrf and dgbtrs routines are employed as well as
the inverse iteration algorithm with reorthogonalization. Different from the inverse
iteration algorithm with reorthogonalization, the computation of solving simultane-
ously r linear equations can be parallelized in terms of k since the linear equations

8 Hiroyuki Ishigami, Hidehiko Hasegawa, Kinji Kimura, and Yoshimasa Nakamura

Algorithm 3 Block Inverse Iteration Algorithm with Reorthogonalization for Com-
puting the Corresponding Eigenvectors to Clustered Eigenvalues of Symmetric
Band Matrices
1: function BANDBIR(B, r, ˆ̀, λ̃1, . . . , λ̃ ˆ̀)
2: Set an n× r matrix Q0 be Q0 := O
3: do j := 1 to ˆ̀/r
4: i := 0
5: Generate Q(0)

j,r :=
[

q(0)
(j−1)r+1 · · · q(0)jr

]
6: !$omp parallel do
7: do k =: (j−1)r+1 to jr
8: LU factorization with partial pivoting: B− λ̃k = PkLkUk . Call dgbtrf
9: end do

10: repeat
11: i := i+1
12: !$omp parallel do
13: do k =: (j−1)r+1, . . . , jr
14: Solve PkLkUkv(i)k = q(i−1)

k . Call dgbtrs
15: end do
16: V (i)

j,r :=V (i)
j,r −Q(j−1)rQ>(j−1)rVj,r . Call dgemm ×2

17: QR factorization: V (i)
j,r = Q(i)

j,rR(i)
j,r

18: Q(i)
j,r := Q(i)

j,r−Q(j−1)rQ>(j−1)rQ(i)
j,r . Call dgemm ×2

19: QR factorization: Q(i)
j,r = Q(i)

j,rR(i)
j,r

20: until converge
21: Q jr :=

[
Q(j−1)r Q(i)

j,r

] (
Qr :=

[
Q(i)

1,r

])
22: end do
23: return Q ˆ̀ =

[
q1 · · · q ˆ̀

]
24: end function

are independent of each other. Thus, the computation of this part is parallelized by
the OpenMP directives shown on lines 6 to 9 and lines 12 to 15. Note that we have
to spend r(3w+1)n working memory to store Pk, Lk, and Uk corresponded to the r
linear equations for the above purpose.

The other is the block reorthogonalization part as shown on lines 16 to 19. In
Algorithm 3, the block Gram-Schmidt algorithm with reorthogonalization (BCGS2
algorithm) [5] is used for this part. The BCGS2 algorithm is mainly composed of the
matrix multiplication, which is one of the BLAS 3 routines. Thus, the dgemm rou-
tines are employed to the computation on lines 16 and 18 in Algorithm 3. As well as
the BIR algorithm proposed in [14], we consider that the recursive implementation
of the classical Gram-Schmidt algorithm [24] is applied to the computation of the
QR factorization on lines 17 and 19, which is also mainly composed of the matrix
multiplications. In this paper, the block reorthogonalization part is parallelized by
employing the parallel BLAS routines.

The BIR algorithm corresponds to the simultaneous inverse iteration algorithm [10]
if r = ˆ̀. Thus, the simultaneous inverse iteration algorithm always spends the larger
amount of memory than the BIR algorithm does. Note that the memory use for the

9

BIR algorithm is almost equal to that for the parallel bisection algorithms mentioned
in 2.3 if r is set to the number of the computation threads.

3.3 Remark on Inverse Iteration Algorithms

The relationship between the inverse iteration algorithm with reorthogonalization
and the BIR algorithm is analogous to that between the LU factorization and the
block LU factorization. Thus, the number of floating-point operations in the BIR
algorithm is almost equal to that in the inverse iteration algorithm with reorthogo-
nalization.

As mentioned before, both the inverse iteration algorithm with reorthogonaliza-
tion and the BIR algorithm are composed two parts: solving linear equation and the
(block) reorthogonalization part. Assuming ` is the number of the desired eigen-
vectors of B, the number of floating-point operations is O(`w2n) in solving linear
equations and is O(ˆ̀2

maxn) in the reorthogonalization part, where ˆ̀max is the number
of eigenvalues belonging to the largest eigenvalue cluster (ˆ̀max ≤ `). As a result,
solving linear equations is occupied with much of the execution time for computing
eigenvectors of B by the inverse iteration algorithm with reorthogonalization as long
as it is not a case that ` is much larger than w. The same is true of the BIR algorithm.

4 Performance Evaluation

This section gives experimental results on shared-memory multi-core processors to
evaluate the performance of the proposed eigensolver, which computes eigenvalues
of real symmetric band matrices by employing parallel Murata’s bisection algorithm
mentioned in Section 2 and computes the corresponding eigenvectors by the BIR
algorithm mentioned in Section 3.2.

Table 1 shows our experimental environment, which is one node of Appro Green
Blade 8000 at ACCMS, Kyoto University. All the experiments were performed
by numactl --interleave all to control NUMA policy. In addition, each
code was run with 16 threads on the condition that the KMP AFFINITY was set to
“none” in all the numerical experiments except for the performance evaluation of the
parallel efficiency of the eigensolvers in Section 4.3. Note that the KMP AFFINITY
is an environment variable for controlling the OpenMP thread affinity. The Intel
Math Kernel Library (MKL) was used for the parallel execution of the BLAS and
LAPACK routines and the OpenMP directives are also used for the thread paral-
lelization as mentioned in Section 2 and 3. The block size r of the BIR algorithm
in the proposed eigensolver was set to r = 16 in all the experiments, which is equal
to the number of cores in the experimental environment shown in Table 1. Since
the working memory for the BIR algorithm is almost equal to that for the parallel
bisection algorithm, the total memory use can be easily estimated on this condition.

10 Hiroyuki Ishigami, Hidehiko Hasegawa, Kinji Kimura, and Yoshimasa Nakamura

Table 1: Specifications of the experimental environment.

One node of Appro Green Blade 8000 at ACCMS
CPU Intel Xeon E5-2670@2.6GHz, 16 cores (8 cores × 2 sockets)

L3 cache: 20MB × 2
RAM DDR3-1600 64GB, 136.4GB/sec
Compiler Intel C++/Fortran Compiler 15.0.2
Options -O3 -xHOST -ipo -no-prec-div

-openmp -mcmodel=medium -shared-intel
Run command numactl --interleave=all
Software Intel Math Kernel Library 11.2.2

Note that the maximum number of iterations in both the BIR algorithm and the in-
verse iteration algorithm with reorthogonalization is set to 5, as well as the dstein
routine provided in LAPACK. In fact, the number of iterations in both of them is 3
in all the experiments.

The following n×n symmetric band matrices with half-bandwidth w were used
for test matrices in the performance evaluation, whose elements are set random num-
bers in the range [0,1): B1 is set to n = 20,000 and w = 64; B2 is set to n = 40,000
and w = 256. In the experiments, the largest ` eigenvalues of them and the corre-
sponding eigenvectors are computed, where ` is set to `= 250, 500, 1,000.

4.1 Performance Evaluation of Murata’s Bisection Algorithm

To evaluate the performance of parallel Murata’s bisection algorithm in Section 2,
we compared the execution time for computing the desired eigenvalues of real sym-
metric band matrices by using parallel Murata’s bisection algorithm with that by
using Gupta’s bisection algorithm. Their codes are parallelized by employing the
OpenMP directives as shown in Section 2.3.

Figs. 1a and 1b show the execution times for computing the ` largest eigenvalues
of B1 and B2, respectively. According to the expectation in Section 2.2, we observe
that Murata’s bisection algorithm is faster than Gupta’s bisection algorithm in all
the cases.

Tables 2a and 2b show the number of computing ν(µ) on the basis of the block
LU factorization algorithm and Martin-Wilkinson’s Gaussian elimination. These Ta-
bles indicate that most of the computation of ν(µ) is performed by the block LU
factorization-based algorithm in Murata’s bisection. In addition, the total number
of computing ν(µ) in Murata’s bisection is almost the same as that in Gupta’s bi-
section. We also observe that the total number of computing ν(µ) in both bisection
algorithms depends on `, the number of the desired eigenvalues.

11

0

50

100

150

200

250

300

250 500 1,000

E
x

ec
u

ti
o

n
 t
im

e
[s

ec
.]

of eigenvalues (l)

Gupta

Murata

(a) Cases of B1

0

1,000

2,000

3,000

4,000

5,000

6,000

250 500 1,000

E
x

ec
u

ti
o

n
 t
im

e
[s

ec
.]

of eigenvalues (l)

Gupta

Murata

(b) Cases of B2

Fig. 1: Execution times for computing the largest ` eigenvalues of real symmetric
band matrices by using parallel Murata’s bisection algorithm and parallel Gupta’s
bisection algorithm.

Table 2: The number of computing ν(µ) on the basis of the block LU factoriza-
tion algorithm and Martin-Wilkinson’s Gaussian elimination when we compute the
largest ` eigenvalues by employing parallel Murata’s bisection algorithm and paral-
lel Gupta’s bisection algorithm

(a) Cases of B1

of eigenvalues (`) 250 500 1,000
Murata Block LU 9,538 18,802 36,852

M-W 108 209 692
Gupta M-W 9,896 19,511 38,544

(b) Cases of B2

of eigenvalues (`) 250 500 1,000
Murata Block LU 9,030 17,728 34,719

M-W 186 506 1,449
Gupta M-W 9,216 18,234 36,168

4.2 Performance Evaluation of BIR Algorithm

In order to evaluate the performance of the proposed eigenvector computation algo-
rithm in Section 3, we compared the execution time for computing of the eigenvec-
tors corresponding to the ` largest eigenvalues of real symmetric band matrices by
using the proposed algorithm (“BIR”) with that by using the inverse iteration algo-
rithm with reorthogonalization (“Inv”). Their codes are parallelized by employing
the Intel MKL and the OpenMP directives as shown in Section 3. In addition, the
` largest eigenvalues of the target matrices are obtained by using parallel Murata’s
bisection algorithm.

Fig. 2 shows the execution times for computing the corresponding eigenvectors
to the ` largest eigenvalues of the target matrices and their details, where “Solving
equation” denotes the execution time for solving linear equations (1) and “Reorthog-
onalization” denotes the execution time for the reorthogonalization part performed
by the MGS algorithm in “Inv” or the BCGS2 algorithm in “BIR”. Figs. 2a and 2b
correspond to the case of B1 and B2, respectively. These figures show that “BIR” is
faster than “Inv” in all the cases. According to the discussion about the number of

12 Hiroyuki Ishigami, Hidehiko Hasegawa, Kinji Kimura, and Yoshimasa Nakamura

0

20

40

60

80

100

In
v

B
IR

(P
ro

p
o
se

d
)

In
v

B
IR

(P
ro

p
o
se

d
)

In
v

B
IR

(P
ro

p
o
se

d
)

250 500 1,000

E
x

ec
u

ti
o

n
 t
im

e
[s

ec
.]

(top) code

(bottom) # of eigenvectors (l)

Solving equation Reorthogonalization misc.

(a) Cases of B1

0

200

400

600

800

1,000

In
v

B
IR

(P
ro

p
o
se

d
)

In
v

B
IR

(P
ro

p
o
se

d
)

In
v

B
IR

(P
ro

p
o
se

d
)

250 500 1,000

E
x

ec
u

ti
o

n
 t
im

e
[s

ec
.]

(top) code

(bottom) # of eigenvectors (l)

Solving equation Reorthogonalization misc.

(b) Cases of B2

Fig. 2: Execution times for computing the corresponding eigenvectors to the largest
` eigenvalues of symmetric band matrices by using the block inverse iteration al-
gorithm with reorthogonalization (“BIR”) and the inverse iteration algorithm with
reorthogonalization (“Inv”) and their details.

floating-point operations in each part mentioned in Section 3.3, the “Solving equa-
tion” part occupies most parts of the execution time of the eigenvector computation
in all the cases.

We also observe that the execution time for the “Solving equation” part of “BIR”
is significantly shorter than that of “Inv” in all the cases. As mentioned in Sec-
tion 3, the parallelization of the “Solving equation” part in “BIR” differs from that
in “Inv”. In the BIR algorithm, each linear equation is solved on each computation
thread, and thus any barrier synchronization between the computation threads does
not occur until all the computation assigned to each computation thread is finished.
On the other hand, since the inverse iteration algorithm with reorthogonalization
is parallelized by employing the parallel BLAS routines, the barrier synchroniza-
tion between the computation threads occurs each time the BLAS routine is called.
Moreover, the BLAS-based computations in the dgbtrf and dgbtrs routines are
difficult to achieve good performance in parallel processing since the size of vectors
and matrices appearing in these computations is too small. From the above reasons,
the “Solving equation” part of “BIR” achieves the higher performance in parallel
processing than that of “Inv”.

Finally, we examined the effect of the block size r on the performance of the
BIR algorithm. As mentioned in Section 3.2, the block reorthogonalization part of
the BIR algorithm includes many matrix multiplications, and thus, the performance

13

0

2

4

6

8

10

12

14

16 32 64 128 256 512

E
x

ec
u

ti
o

n
 t
im

e
[s

ec
.]

Block size (r)

Fig. 3: Execution times for computing the corresponding eigenvectors to the largest
1,000 eigenvalues of B1 by using the block inverse iteration algorithm with re-
orthogonalization.

of the BIR algorithm depends on that of the routine for the matrix multiplications
dgemm. In addition, the dgemm routine is difficult to achieve the better perfor-
mance if the size of the matrices appearing in the computation is sufficiently large.
Fig. 3 shows the execution times for computing the corresponding eigenvectors to
the largest 1,000 eigenvalues of B1 by using the BIR algorithm with different block
size r. From this figure, we observe that the BIR algorithm with r = 128 or 256
is somewhat faster than that with r = 16 for computing the 1,000 eigenvectors of
B1. In spite of this tendency, we set r as the number of cores in the proposed eigen-
solver. This is because r must be smaller than the number of the desired eigenvectors
as mentioned in Section 3.2.

4.3 Performance Evaluation of Proposed Band Eigensolver

In order to evaluate the performance of the proposed symmetric band eigensolver,
we compared the proposed solver (“Murata+BIR”) with the two conventional eigen-
solvers. One of the conventional solvers is also to compute eigenvalues by using Mu-
rata’s bisection algorithm and to compute the corresponding eigenvectors by using
the inverse iteration algorithm with reorthogonalization shown in Algorithm 2 and
is referred to as “Murata+Inv”. The codes of “Murata+BIR” and “Murata+Inv” are
also parallelized by employing the Intel MKL and the OpenMP directives as shown
in Section 2.3 and Section 3. The other conventional solver is “dsbevx” provided
in Intel MKL, which is a LAPACK routine for computing a subset of eigenpairs
of real symmetric band matrices through the tridiagonalization. Note that “dsbevx”
employs the dsbtrd routine to tridiagonalize the target band matrix in the way
proposed in [17], the dstebz routine to compute the desired eigenvalues of the
real symmetric tridiagonal matrix, and the dstein routine to compute the corre-
sponding eigenvectors.

14 Hiroyuki Ishigami, Hidehiko Hasegawa, Kinji Kimura, and Yoshimasa Nakamura

0

100

200

300

400

500

600

700

250 500 1,000

E
x

ec
u

ti
o

n
 t
im

e
[s

ec
.]

of eigenpairs (l)

Conventional (dsbevx)
Conventional (Murata+Inv)
Proposed (Murata+BIR)

(a) Cases of B1

0

500

1,000

1,500

2,000

2,500

3,000

3,500

250 500 1,000

E
x

ec
u

ti
o

n
 t
im

e
[s

ec
.]

of eigenpairs (l)

Conventional (dsbevx)
Conventional (Murata+Inv)
Proposed (Murata+BIR)

(b) Cases of B2

Fig. 4: Execution times for computing the eigenpairs corresponding to the largest
` eigenvalues of real symmetric band matrices by using the proposed solver (“Mu-
rata+BIR”) and the conventional solvers (“Murata+Inv” and “dsbevx”).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

M
u
ra

ta
+

In
v

M
u
ra

ta
+

B
IR

(P
ro

p
o
se

d
)

M
u
ra

ta
+

In
v

M
u
ra

ta
+

B
IR

(P
ro

p
o
se

d
)

M
u
ra

ta
+

In
v

M
u
ra

ta
+

B
IR

(P
ro

p
o
se

d
)

250 500 1,000

(top) code (bottom) # of eigenpairs (l)

misc. Eigenvector (Inv)
Eigenvector (BIR) Eigenvalue (Murata)

(a) Cases of B1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

M
u
ra

ta
+

In
v

M
u
ra

ta
+

B
IR

(P
ro

p
o
se

d
)

M
u
ra

ta
+

In
v

M
u
ra

ta
+

B
IR

(P
ro

p
o
se

d
)

M
u
ra

ta
+

In
v

M
u
ra

ta
+

B
IR

(P
ro

p
o
se

d
)

250 500 1,000

(top) code (bottom) # of eigenpairs (l)

misc. Eigenvector (Inv)
Eigenvector (BIR) Eigenvalue (Murata)

(b) Cases of B2

Fig. 5: Details of the execution times for computing the eigenpairs corresponding to
the largest ` eigenvalues of real symmetric band matrices by using “Murata+BIR”
and “Murata+Inv”.

Figs. 4a and 4b show the overall execution time for computing the eigenpairs
corresponding to the ` largest eigenvalues of B1 and B2, respectively. We observe
that the proposed eigensolver, “Murata+BIR”, is faster than the conventional solvers
in all the cases. Figs. 5a and 5b show the details of the overall execution time for
“Murata+BIR” and “Murata+Inv”. We observe that most of the execution time in
“Murata+BIR” remains to be occupied by that of the eigenvalue computation using
parallel Murata’s bisection algorithm in all the cases. One reason of this result is
that the number of floating-point operations in “Murata”, Murata’s bisection algo-
rithm, is much higher than that in “BIR”. The other reason is that the execution time

15

1.E-18

1.E-17

1.E-16

1.E-15

1.E-14

1.E-13

1.E-12

250 500 1,000

O
rt

h
o

g
o

n
al

it
y

of eigenpairs (l)

Conventional (dsbevx)
Conventional (Murata+Inv)
Proposed (Murata+BIR)

(a) Cases of B1

1.E-18

1.E-17

1.E-16

1.E-15

1.E-14

1.E-13

1.E-12

250 500 1,000

O
rt

h
o

g
o

n
al

it
y

of eigenpairs (l)

Conventional (dsbevx)
Conventional (Murata+Inv)
Proposed (Murata+BIR)

(b) Cases of B2

Fig. 6: Orthogonality ‖Q>` Q` − I‖∞/` of the corresponding eigenvectors to the
largest ` eigenvalues of real symmetric band matrices by using the proposed solver
(“Murata+BIR”) and the conventional solvers (“Murata+Inv” and “dsbevx”).

1.E-18

1.E-17

1.E-16

1.E-15

1.E-14

1.E-13

1.E-12

250 500 1,000

R
es

id
u
al

of eigenpairs (l)

Conventional (dsbevx)
Conventional (Murata+Inv)
Proposed (Murata+BIR)

(a) Cases of B1

1.E-18

1.E-17

1.E-16

1.E-15

1.E-14

1.E-13

1.E-12

250 500 1,000

R
es

id
u
al

of eigenpairs (l)

Conventional (dsbevx)
Conventional (Murata+Inv)
Proposed (Murata+BIR)

(b) Cases of B2

Fig. 7: Residual ‖BiQ`−Q`D`‖∞/` of the eigenpairs corresponding to the largest
` eigenvalues of real symmetric band matrices by using the proposed solver (“Mu-
rata+BIR”) and the conventional solvers (“Murata+Inv” and “dsbevx”).

for eigenvector computation in “Murata+BIR” is significantly reduced from that in
“Murata+Inv” as mentioned in Section 4.2.

The accuracy of the eigenpairs computed by using the proposed solver and the
conventional solvers is shown as follows. Figs. 6a and 6b show the orthogonality
‖Q>` Q`−I‖∞/` of B1 and B2, respectively. Similarly, Figs. 7a and 7b show the resid-
ual ‖BiQ`−Q`D`‖∞/` of B1 and B2, respectively. Note that D` = diag(λ̃1, · · · , λ̃`)
and Q` =

[
q1 · · · q`

]
. These figures show that the proposed eigensolver computes

the desired eigenpairs as accurately as the conventional solvers.
To evaluate the parallel efficiency, we compared the overall execution times with

1, 2, 4, 8, and 16 threads for computing the eigenpairs corresponding to the ` largest
eigenvalues of the test matrices. Figs. 8, 9, and 10 show the cases of B1. Figs. 11, 12,
and 13 show the cases of B2. In these figures, we also compared the execution
times of each code run using the different KMP AFFINITY environment variables:

16 Hiroyuki Ishigami, Hidehiko Hasegawa, Kinji Kimura, and Yoshimasa Nakamura

0

500

1,000

1,500

2,000

2,500

3,000

1 2 4 8 16

E
x

ec
u
ti

o
n
 t

im
e

[s
ec

.]

of threads

none
scatter
compact

(a) Cases of `= 250

0

500

1,000

1,500

2,000

2,500

3,000

1 2 4 8 16

E
x

ec
u
ti

o
n
 t

im
e

[s
ec

.]

of threads

none
scatter
compact

(b) Cases of `= 500

0

500

1,000

1,500

2,000

2,500

3,000

1 2 4 8 16

E
x

ec
u
ti

o
n
 t

im
e

[s
ec

.]

of threads

none
scatter
compact

(c) Cases of `= 1,000

Fig. 8: Execution times for computing the eigenpairs corresponding to the largest `
eigenvalues of B1 by using “dsbevx” in different KMP AFFINITY.

0

200

400

600

800

1 2 4 8 16

E
x

ec
u
ti

o
n
 t

im
e

[s
ec

.]

of threads

none
scatter
compact

(a) Cases of `= 250

0

200

400

600

800

1,000

1,200

1 2 4 8 16

E
x

ec
u
ti

o
n
 t

im
e

[s
ec

.]

of threads

none
scatter
compact

(b) Cases of `= 500

0

500

1,000

1,500

2,000

2,500

3,000

1 2 4 8 16

E
x

ec
u
ti

o
n
 t

im
e

[s
ec

.]

of threads

none
scatter
compact

(c) Cases of `= 1,000

Fig. 9: Execution times for computing the eigenpairs corresponding to the largest `
eigenvalues of B1 by using “Murata+Inv” in different KMP AFFINITY.

0

200

400

600

800

1 2 4 8 16

E
x

ec
u
ti

o
n
 t

im
e

[s
ec

.]

of threads

none
scatter
compact

(a) Cases of `= 250

0

200

400

600

800

1,000

1,200

1,400

1 2 4 8 16

E
x

ec
u
ti

o
n
 t

im
e

[s
ec

.]

of threads

none
scatter
compact

(b) Cases of `= 500

0

500

1,000

1,500

2,000

2,500

1 2 4 8 16

E
x

ec
u
ti

o
n
 t

im
e

[s
ec

.]

of threads

none
scatter
compact

(c) Cases of `= 1,000

Fig. 10: Execution times for computing the eigenpairs corresponding to the largest
` eigenvalues of B1 by using the proposed eigensolver “Murata+BIR” in different
KMP AFFINITY.

“none”, “scatter”, and “compact”. From these figures, we observe that the proposed
eigensolver “Murata+BIR” achieve the higher parallel efficiency than the conven-
tional eigensolvers “dsbevx” and “Murata+Inv”. We also observe that, if the number
of threads is 16, each of the eigensolvers run with “none” achieves a competitive per-
formance as that run with “scatter” does and the eigensolvers run with “compact”
achieves the worst performance. From Figs. 10 and 13, the parallel efficiency of the
proposed eigensolver run with “scatter” for B2 is higher than that for B1, which is

17

0

5,000

10,000

15,000

20,000

1 2 4 8 16

E
x

ec
u
ti

o
n
 t

im
e

[s
ec

.]

of threads

none
scatter
compact

(a) Cases of `= 250

0

5,000

10,000

15,000

20,000

1 2 4 8 16

E
x

ec
u
ti

o
n
 t

im
e

[s
ec

.]

of threads

none
scatter
compact

(b) Cases of `= 500

0

5,000

10,000

15,000

20,000

1 2 4 8 16

E
x

ec
u
ti

o
n
 t

im
e

[s
ec

.]

of threads

none
scatter
compact

(c) Cases of `= 1,000

Fig. 11: Execution times for computing the eigenpairs corresponding to the largest
` eigenvalues of B2 by using “dsbevx” in different KMP AFFINITY.

0

2,000

4,000

6,000

8,000

1 2 4 8 16

E
x

ec
u
ti

o
n
 t

im
e

[s
ec

.]

of threads

none
scatter
compact

(a) Cases of `= 250

0

4,000

8,000

12,000

16,000

1 2 4 8 16

E
x

ec
u
ti

o
n
 t

im
e

[s
ec

.]

of threads

none
scatter
compact

(b) Cases of `= 500

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

1 2 4 8 16

E
x

ec
u
ti

o
n
 t

im
e

[s
ec

.]

of threads

none
scatter
compact

(c) Cases of `= 1,000

Fig. 12: Execution times for computing the eigenpairs corresponding to the largest
` eigenvalues of B2 by using “Murata+Inv” in different KMP AFFINITY.

0

2,000

4,000

6,000

8,000

1 2 4 8 16

E
x

ec
u
ti

o
n
 t

im
e

[s
ec

.]

of threads

none
scatter
compact

(a) Cases of `= 250

0

4,000

8,000

12,000

16,000

1 2 4 8 16

E
x

ec
u
ti

o
n
 t

im
e

[s
ec

.]

of threads

none
scatter
compact

(b) Cases of `= 500

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

1 2 4 8 16

E
x

ec
u
ti

o
n
 t

im
e

[s
ec

.]

of threads

none
scatter
compact

(c) Cases of `= 1,000

Fig. 13: Execution times for computing the eigenpairs corresponding to the largest
` eigenvalues of B2 by using the proposed eigensolver “Murata+BIR” in different
KMP AFFINITY.

smaller than B2 in terms of both the matrix size and the bandwidth size. Moreover,
the parallel efficiency of it for both B1 and B2 becomes higher than as the number
of the desired eigenpairs ` increases.

18 Hiroyuki Ishigami, Hidehiko Hasegawa, Kinji Kimura, and Yoshimasa Nakamura

5 Conclusions and Future Work

In order to accelerate a subset computation of eigenpairs for real symmetric band
matrices, the parallel symmetric band eigensolver is proposed, which computes di-
rectly the desired eigenvalues by using parallel Murata’s bisection algorithm in Sec-
tion 2 and the corresponding eigenvectors by using the BIR algorithm in Section 3.2.
Employing not only Martin-Wilkinson’s Gaussian elimination but also the block LU
factorization, parallel Murata’s bisection algorithm is faster than parallel Gupta’s bi-
section algorithm. Numerical experiments on shared-memory multi-core processors
show that the BIR algorithm is much faster than the inverse iteration algorithm with
reorthogonalization since the BIR algorithm is parallelized with lower communica-
tion cost than the other. As the result, the numerical experiments also show that the
proposed eigensolver is faster than the conventional solvers. In conclusion, we show
that the parallel efficiency of the proposed eigensolver run with “scatter” becomes
much higher as the problem size increases.

One of future work is to apply the proposed symmetric band eigensolver for
computing a subset of eigenpairs of real symmetric dense matrices appearing in
actual applications, such as the kernel principal component analysis. The number
of the desired eigenpairs in such problems may be fewer than the number of the
processing elements. In this case, the multi-section methods proposed in [18, 23] or
the multi-section with multiple eigenvalues method [16] is expected to achieve the
higher performance than the parallel bisection algorithm in Section 2.3. Thus, the
development of the multi-section algorithm based on Murata’s bisection algorithm
is considered as the other future work.

Acknowledgements The authors would like to express their gratitude to reviewers for their help-
ful comments. In this work, we used the supercomputer of ACCMS, Kyoto University.

References

1. Anderson, E., Bai, Z., Bischof, C., Blackford, L., Demmel, J., Dongarra, J., Du Croz, J., Green-
baum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, third edn.
SIAM, Philadelphia, PA, USA (1999)

2. Auckenthaler, T., Blum, V., Bungartz, H.J., Huckle, T., Johanni, R., Krämer, L., Lang, B.,
Lederer, H., Willems, P.: Parallel solution of partial symmetric eigenvalue problems from elec-
tronic structure calculations. Parallel Computing 37(12), 783–794 (2011)

3. Auckenthaler, T., Bungartz, H.J., Huckle, T., Krämer, L., Lang, B., Willems, P.: Developing
algorithms and software for the parallel solution of the symmetric eigenvalue problem. Journal
of Computational Science 2(3), 272–278 (2011)

4. Ballard, G., Demmel, J., Knight, N.: Avoiding communication in successive band reduction.
ACM Trans. Parallel Comput. 1(2), 11:1–11:37 (2015)

5. Barlow, J.L., Smoktunowicz, A.: Reorthogonalized block classical Gram-Schmidt. Numer.
Math. 123(3), 1–29 (2012)

6. Barth, W., Martin, R., Wilkinson, J.: Calculation of the eigenvalues of a symmetric tridiagonal
matrix by the method of bisection. Numer. Math. 9(5), 386–393 (1967)

19

7. Bischof, C., Sun, X., Lang, B.: Parallel tridiagonalization through two-step band reduction.
In: Proceedings of the Scalable High-Performance Computing Conference, pp. 23–27. IEEE
(1994)

8. Bischof, C.H., Lang, B., Sun, X.: A framework for symmetric band reduction. ACM Trans.
Math. Softw. 26(4), 581–601 (2000)

9. Blackford, L.S., Demmel, J., Dongarra, J., Duff, I., Hammarling, S., Henry, G., Heroux, M.,
Kaufman, L., Lumsdaine, A., Petitet, A., Pozo, R., Remington, K., Whaley, R.C.: An updated
set of basic linear algebra subprograms (BLAS). ACM Trans. Math. Softw. 28(2), 135–151
(2002)

10. Chatelin, F.: Eigenvalues of Matrices. SIAM, Philadelphia, PA, USA (2012)
11. Golub, G.H., van Loan, C.F.: Matrix Computations, third edn. Johns Hopkins University

Press, Baltimore, MD, USA (1996)
12. Gupta, K.K.: Eigenproblem solution by a combined Sturm sequence and inverse iteration tech-

nique. Int. J. num. Meth. Engng 7(1), 17–42 (1973)
13. Hasegawa, H.: Symmetric band eigenvalue solvers for vector computers and conventional

computers (in Japanese). J. Inf. Process. 30(3), 261–268 (1989)
14. Ishigami, H., Kimura, K., Nakamura, Y.: A new parallel symmetric tridiagonal eigensolver

based on bisection and inverse iteration algorithms for shared-memory multi-core processors.
In: P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2015 Tenth International
Conference on, pp. 216–223. IEEE (2015)

15. Kahan, W.: Accurate eigenvalues of a symmetric tridiagonal matrix. Technical Report, Com-
puter Science Dept. Stanford University (CS41) (1966)

16. Katagiri, T., Vömel, C., Demmel, J.W.: Automatic performance tuning for the multi-section
with multiple eigenvalues method for symmetric tridiagonal eigenproblems. In: Applied Par-
allel Computing. State of the Art in Scientific Computing, Lecture Notes in Computer Science,
vol. 4699, pp. 938–948. Springer Berlin Heidelberg (2007)

17. Kaufman, L.: Band reduction algorithms revisited. ACM Trans. Math. Softw. 26(4), 551–567
(2000)

18. Lo, S., Philippe, B., Sameh, A.: A multiprocessor algorithm for the symmetric tridiagonal
eigenvalue problem. SIAM J. Sci. Stat. Comput. 8(2), s155–s165 (1987)

19. Martin, R., Wilkinson, J.: Solution of symmetric and unsymmetric band equations and the
calculation of eigenvectors of band matrices. Numer. Math. 9(4), 279–301 (1967)

20. Murata, K.: Reexamination of the standard eigenvalue problem of the symmetric matrix. II
The direct sturm inverse-iteration for the banded matrix (in Japanese). Research report of
University of Library and Information Science 5(1), 25–45 (1986)

21. Parlett, B.N.: The Symmetric Eigenvalue Problem. SIAM, Philadelphia, PA, USA (1998)
22. Peters, G., Wilkinson, J.: The calculation of specified eigenvectors by inverse iteration. In:

F. Bauer (ed.) Linear Algebra, Handbook for Automatic Computation, vol. 2, pp. 418–439.
Springer Berlin Heidelberg (1971)

23. Simon, H.: Bisection is not optimal on vector processors. SIAM J. Sci. Stat. Comput. 10(1),
205–209 (1989)

24. Yokozawa, T., Takahashi, D., Boku, T., Sato, M.: Parallel implementation of a recursive
blocked algorithm for classical Gram-Schmidt orthogonalization. Proc. 9th International
Workshop on State-of-the-Art in Scientific and Parallel Computing (PARA 2008) (2008)

