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 High precision arithmetics can improve the convergence of Krylov subspace methods.
 We  have accelerated “Double-Double”(DD) precision arithmetics using AVX2. DD arithmetics is one of high precision arithmetics.
 DD-SpMV (yDD=ADxDD) in CRS (compressed row storage format) using AVX2 needs “processing for the remainder” and  

“sum. of elements in the SIMD register” for each rows. They are factors that affect performance.
 BCRS (Block CRS) can reduce these factors that affect performance . However it may result in increased computation. 

Conclusions
• We accelerate DD-SpMV in BCRS4x1 using AVX2. It does not need “processing for the remainder” and “sum. of element in SIMD reg.”.
• Performances of DD-SpMV in BCRS4x1 are not bounded by memory access speed.
• BCRS4x1 is effective for the large size matrices (N>106). That of the effect of improving memory access is large.
• The best storage format is BCRS4x1. Total elapsed time of BCRS4x1 is 1.02 times of the best combinations.

Performances of DD-SpMV in BCRS format
(Intel Core i7 4770K 3.4GHz 4core 16GB, CentOS 6.4, intel C/C++ Compiler 13.1.0)

for(i=0; i<N; i++){

for(j=A->ptr[i]; j<A->ptr[i+1]-3; j+=4){

xv = _mm256_set_pd( x[A->index[j]],

x[A->index[j+1]],

x[A->index[j+2]],

x[A->index[j+3]] );

av = _mm256_load_pd(&A->value[j]);

DD_ADD_MULT (av, xv, yv);

}

processing remainder();

summation of elements(); 

}

for(i=0; i<N; i++){

for(j=A->ptr[i]; j<A->ptr[i+1]; j+=4){

av = _mm256_load_pd(&A->value[j*4]);

xv = _mm256_broadcast_sd(&x[A->index[j]*4]);

DD_ADD_MULT (av, xv, yv);

}

_mm256_store_pd(&y[i], yv);

}

Fig.2 SpMV in CRS

Loading x Processing for
the remainder

Sum. of elements
in SIMD reg.

Storing y

CRS set each row each row each row

BCRS1x4 load none each row each row

BCRS2x2 set none sets of two sets of two

BCRS4x1 broadcast none none sets of four

Fig.3 SpMV in BCRS4x1

Table 2 Feature of each matrix format
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Fig.4 The effect of memory access speed
(band matrix, nnz/row=32,  It does not occur processing for the remainder)

32

N

N = 4.0 ×105 (out of the cache) CRS BCRS1x4 BCRS4x1

Computation time 9.07 8.16 8.16

Processing for the remainder 1.12 1.12 none

Sum. of the elements in the SIMD reg. 1.32 none none

Total 11.51 9.28 8.16

Table3 The effect of DD-SpMV in BCRS4x1 [ms]
(band matrix, nnz/row = 33)

N = 104 (in the cache) CRS BCRS1x4 BCRS4x1

Computation time 0.16 0.15 0.15

Processing for the remainder 0.04 0.04 none

Sum. of the elements in the SIMD reg. 0.05 none none

Total 0.25 0.19 0.15

-7 %

-29 %

-11 %

-24 %

Double precision sparse matrix and DD vector product using AVX2
 AVX2 must process four double precision data simultaneously.

 DD-SpMV in CRS needs “processing for the remainder” for each rows (1, 2, 3).
 When storing y, DD-SpMV in CRS needs “sum. of elements in the SIMD register”.
 BCRS can reduce “processing for the remainder“ and “sum. of elements”.

bytes / flops

yD = ADxD 14 (28 bytes / 2 flops)

yDD = ADDxDD 2.48 (52 bytes / 21 flops)

yDD = ADxDD 2.32 (44 bytes / 19 flops)

◎

☓

“Double-Double” precision 

Table 1 bytes/flops of y = Ax

Fig.1 Double-Double precision format

 Double-Double precision(DD) arithmetic uses two double precision
variables to implement one quadruple precision variable.

 DD mult. and add. consists of 19 double precision operations.

◎

Total time (100 mat.) The number of the best matrices

CRS 730 (1.35) 14

BCRS 1x4 880 (1.33) 4

BCRS 4x1 540 (1.02) 82

The best combinations 530 (1) 100

Table 4 Total elapsed time of DD-SpMV [ms]
(relative performance)

BCRS consists zero elements
→ It increases computations

factors that affect performance
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1≦Computation ratio (BCRS 4x1/CRS) < 2
2≦Computation ratio (BCRS4x1/CRS) < 3
3≦Computation ratio (BCRS4x1/CRS)

L3 cache size (8MB)

DD-SpMV in BCRS4x1 is not bounded
by memory access speed (25.6GB/s)

x0.71

x0.88

 “processing for the remainder” and “sum. of elements in SIMD reg.” are 21% of elapsed time.
 The computation time of BCRS1x4 is 7-11% faster than that of CRS.

 It is the effect of improving memory access by BCRS4x1.
 The effect of improving memory access is large for the large size matrices.

The case of optimally-combinations of CRS, BCRS1x4 BCRS4x1

 Total elapsed time of BCRS4x1 is 1.02 times of the best combinations.
 BCRS4x1 does not need combinations of other storage format.
 BCRS4x1 is the best storage format.
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Double-Double precision
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 We accelerate double precision sparse matrix and DD vector product.
 This allowed the matrix data size to half and bytes/flops is 94% compared

to DD matrix and DD vector product.

Fig.5 Performance of BCRS 4x1 
(Univ. of Florida sparse matrix collection, 100 matrices)

78%

90%

 The effect of BCRS4x1 is effective for the large size matrices (N>106)
 In small size matrices, the effect of improving memory access is low.  
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