Distributed SILC: An Easy-to-Use Interface for
MPI-Based Parallel Matrix Computation
Libraries

Tamito KAJIYAMAN?2, Akira NUKADA'2, Reiji SUDA%!,
Hidehiko HASEGAWAS3, and Akira NISHIDA*!

! CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
2 The University of Tokyo, Tokyo 113-8656, Japan
3 University of Tsukuba, Tsukuba 305-8550, Japan
4 21st Century COE Program, Chuo University, Tokyo 112-8551, Japan

Abstract. The present paper describes the design and implementation
of distributed SILC (Simple Interface for Library Collections) that gives
users access to a variety of MPI-based parallel matrix computation li-
braries in a flexible and environment-independent manner. Distributed
SILC allows users to make use of MPI-based parallel matrix computation
libraries not only in MPI-based parallel user programs but also in sequen-
tial user programs. Since user programs for SILC are free of a source-level
dependency on particular libraries and computing environments, users
can easily utilize alternative libraries and computing environments with-
out any modification in the user programs. The experimental results of
two test problems showed that the implemented SILC system achieved
speedups of 2.69 and 7.54 using MPI-based parallel matrix computation
libraries with 16 processes.

1 Introduction

The traditional way of using matrix computation libraries based directly on
library-specific application programming interfaces usually leads to a source-
level dependency on the libraries in use. This source-level dependency is the
primary reason why users (i.e., application programmers) are often required to
make a considerable amount of modifications to their user programs, for example
when porting them to other computing environments or when trying out other
libraries having different sets of solvers, matrix storage formats, arithmetic pre-
cisions, and so on. To address this issue inherent in the traditional programming
style, we have been proposing an easy-to-use application framework named Sim-
ple Interface for Library Collections (SILC) [1,2]. A user program in the SILC
framework first deposits data such as matrices and vectors into a separate mem-
ory space. Next, the user program makes requests for computation by means
of mathematical expressions in the form of text. These requests are translated
into calls for appropriate library functions, which are carried out in the separate
memory space independently of the user program. Finally, the user program
fetches the results of computation from the separate memory space.

double *A, *B; silc_envelope_t A, b, x;
int desc_A[9], desc_B[9], *ipiv, info;

/* create matrix A and vector B */

/* create matrix A and vector B */
SILC_PUT("A", &A);

PDGESV(N, NRHS, A, IA, JA, desc_A, ipiv, B, SILC:PUT("b", &b);
IB, JB, desc_B, &info); SILC_EXEC("x = A \\ b"); /x call PDGESV() */
/* solution X is stored in B */ SILC_GET (&x, "x");
(a) (b)

Fig. 1. A comparison of two C programs (a) in the traditional programming style and
(b) in the SILC framework, both making use of ScaLAPACK to solve a system of linear
equations Ax = b.

Figure 1 shows two user programs written in C, one in the traditional pro-
gramming style and the other in the SILC framework. The traditional user pro-
gram shown in Fig. 1 (a) prepares matrix A and vector b using library-specific
data structures and makes a call for a library function in ScaLAPACK [3] to
solve a system of linear equations Az = b. The user program for SILC shown
in Fig. 1 (b) realizes the same computation using the following three routines:
SILC_PUT to deposit A and b into a separate memory space, SILC_EXEC to issue
a request for solution of the linear system by means of a mathematical expression
in the form of text, and SILC_GET to retrieve the solution @. The mathematical
expression specified as the argument of SILC_EXEC is translated into a call for
the library function in ScaLAPACK for example, and carried out in the separate
memory space.

We have developed a SILC system for sequential and shared-memory parallel
computing environments [1,2]. The current implementation of SILC is based on
a client-server architecture, in which a user program is a client of a SILC server
running in a remote computing environment. Since a user program for SILC
does not contain any library-specific code, no modification to the user program is
required to utilize alternative matrix computation libraries. Moreover, users can
automatically gain the advantages of parallel computation by using a SILC server
that runs in a parallel computing environment. The main overhead in using SILC,
on the other hand, is the cost of data communications between a user program
and a SILC server. However, it is not difficult to reduce the relative amount of
communication overhead, since the time complexities of matrix computations
tend to be larger than their space complexities. For instance, solving a dense
linear system with N unknowns takes O(N?) time, while the time necessary
for data communications is of O(N?). Consequently, in many cases the use of a
faster matrix computation library and computing environment results in good
speedups even at the cost of data communications.

2 SILC for Distributed Parallel Computing Environments

We have been developing a SILC system for distributed parallel computing en-
vironments that allows users to make use of MPI-based matrix computation
libraries in a flexible and computing environment-independent manner. The pri-

T T T

User program User program

| | |
I Data communications I I I I

| | | | | |
MPI-based parallel library MPI-based parallel library

| | | | | |

Configuration (A). Configuration (B).

T T T
User program T T T

User program

MPI-based parallel library MPI-based parallel library
| | | | | |

Configuration (C). The traditional configuration.

Fig. 2. Three system configurations of distributed SILC, compared with the configu-
ration of an MPI-based parallel program in the traditional programming style.

mary goal in the design of distributed SILC is to support as many MPI-based
parallel matrix computation libraries and computing environments as possible,
since SILC is a piece of middleware placed between user programs and matrix
computation libraries, serving as an abstraction layer that hides the details of
the libraries and underlying computing environments. Having this design goal
in mind, we consider three system configurations shown in Fig. 2. The shaded
parts in the figure show the components that SILC provides. For comparison,
the figure also shows the configuration of a user program in the traditional pro-
gramming style. The traditional user program in this example consists of four
MPI processes.

Configurations (A) and (B) are based on a client-server architecture in which
a user program is a client of an MPI-based parallel SILC server. The user pro-
gram establishes a TCP connection to the SILC server and makes use of MPI-
based parallel matrix computation libraries managed by the server. The user
program in (A) is sequential, while the user program in (B) is an MPI-based
parallel program. Both the server and the user program in (B) shown in Fig. 2
consist of four MPI processes.

In Configuration (A), the user program makes a connection to one of the
server processes through which both data and requests for computation are
transferred. The server distributes the received data among the server processes
by means of a data redistribution mechanism, keeping the data among the server
processes in a distributed manner. The data redistribution mechanism is also uti-
lized to make a change in data distributions in the following two situations. One
situation is when the server handles requests for computation, where the data is
passed to a library function as an argument in a different data distribution the
library function accepts. The other situation is when the user program fetches

the results of preceding computation requests, where the data is transferred in
the data distribution that the user program requires. Computation requests by
means of textual mathematical expressions are handled by the library interface
in the server. The interface incorporates an interpreter that translates the ex-
pressions into calls for appropriate library functions, which are carried out within
the server processes.

In Configuration (B), each process of the MPI-based parallel user program
makes a separate connection to one of the server processes; that is, multiple
connections are established between the user program and the server. Data is
retained in a distributed manner in both the user program and the SILC server,
and parallel data transfer is performed between the user program and the server
through the multiple connections. The data redistribution mechanism is em-
ployed in the same manner as Configuration (A), when the server needs to change
distributions of data. Requests for computation, on the other hand, are sent to
the server from one process on behalf of the user program. Since a user program
in Configuration (B) is an ordinary MPI-based program, it can be executed, for
example, as follows:

mpirun -np n ./my_silc_application

where n is the number of processes on which the program runs. At the moment,
the number of processes of the user program must be smaller than or equal to
the number of the server’s processes.

Configuration (C) is prepared for some restrictive computing environments in
which the client-server architecture cannot be adopted. In this configuration, the
data redistribution mechanism and library interface of the SILC server are imple-
mented as a library, which is linked to MPI-based parallel user programs together
with MPI-based parallel matrix computation libraries. There is no source-level
difference between a user program in Configuration (B) and another program
in (C); that is, the source code of the two programs is the same, so that these
configurations can be exchanged without any modification to the source code.
Unlike Configurations (A) and (B), on the other hand, library functions in this
configuration are carried out within the processes of a user program.

3 Experiments

To determine whether the implemented SILC system is capable of achieving
speedups when compared with the traditional programming style, we conducted
experiments with regard to the following two test problems.

Problem 1. A dense linear system Ax = b.
Problem 2. An initial value problem of a partial differential equation (PDE).

Table 1 is a summary of the computing environments used in the experiments.
These computing environments are in the same Gigabit Ethernet (GbE) LAN.
Both Xeon4 and Xeon8 consist of a disjoint set of nodes in the same GbE-based
PC cluster. Only one core of each node was used. Computation was done in
double precision real throughout the experiments.

Table 1. The computing environments used in the experiments.

Host name | Specifications

Xeon4 IBM eServer xSeries 335 (dual Intel Xeon 2.8 GHz, L2 cache 512 KB,
Memory 1 GB) x 4, Red Hat Linux 8.0, LAM/MPI 7.0

Xeon8 Different 8 nodes in the same PC cluster as Xeon4

Altix SGI Altix 3700 (Intel Itanium2 1.3 GHz x 32, L2 cache 256 KB,
Memory 32 GB), Red Hat Linux Advanced Server 2.1, SGI MPI 4.4
(MPT 1.9.1)

3.1 Problem 1: Solution of a Dense Linear System

Consider solving a system of linear equations Ax = b using the PDGESV routine
in ScaLAPACK, where A is an N x N dense matrix and b and & are N-vectors.
We prepared the following two user programs, both of which are MPI-based
parallel programs written in C.

Program Py in the traditional programming style. The program first prepares A
and b in the two-dimensional block-cyclic distribution [3]. The elements of A are
random numbers, while those of b are given so that all elements of solution x
will be 1. Then, the program makes a call for PDGESV to solve the linear system.
The time elapsed in the ScaLAPACK routine was measured as the execution
time of the program.

Program Py in the SILC framework. The program also prepares A and b in the
same way as P;. Next, the program makes two calls for SILC_PUT to deposit A
and b into a SILC server, respectively, and another call for SILC_EXEC to request
the solution of the linear system. This request is translated into a call for the
PDGESV routine, which is carried out on the server side. Finally, the program calls
for SILC_GET to retrieve the solution & from the server. We prepared three SILC
servers running in Xeon4, in Xeon8, and in Altix. The elapsed time from the
connection to a server to the data transfer of x was measured as the execution
time of the program.

Table 2 summarizes the computing environments used for Problem 1. Both
P, and P, were executed with 4 processes in Xeon4, whereas the SILC servers
used by P» were executed with 4 processes in Xeon4, with 8 processes in Xeon8,
and with 16 processes in Altix. Since P; is an MPI-based parallel program, this
configuration corresponds to Configuration (B) shown in Fig. 2. Timing was
done by the gettimeofday system call.

Table 3 shows the experimental results, where T is execution time in sec-
onds, S is speedup (i.e., a ratio of the execution time of P; to that of P»), and
C' is a proportion of communication overhead to the execution time of Py (we
assumed C' = (T — Tcomp)/T, where Teomp is a computation time measured
on the server side). The execution time of P, includes the time for the data

Table 2. The computing environments used for Problem 1.

Label User program SILC server Configuration
Trad. Py in Xeon4d (4 PEs - -
SILC (local) P> in Xeon4 (4 PEs) | Xeon8 (4 PEs) (B)

SILC (remote #1)
SILC (remote #2)

)

()

P, in Xeon4 (4 PEs)
()

Xeon8 (8 PEs) (B)
P in Xeon4 (4 PEs (

Altix (16 PEs) B)

Table 3. The results of Problem 1 (solution of a dense linear system Ax = b). T is
execution time in seconds, S is speedup, and C' is communication overhead.

Trad. SILC (local) SILC (remote #1) | SILC (remote #2)
N T T (S) C T (S) C T (S) C
1,000 1.592| 1.417 (1.12) 7.8%| 2.179 (0.73) 9.5%] 0.790 (2.02) 16.0%
2,000| 5.403| 5.453(0.99) 6.5% | 5.789 (0.93) 11.1%| 2.827 (1.91) 13.8%
4,000| 27.153| 30.145 (0.90) 4.0% | 22.626 (1.20) 9.8%|14.235 (1.91) 10.2%
8,000 | 186.991 | 208.880 (0.90) 2.3% |130.892 (1.43) 6.5% | 69.481 (2.69) 8.3%

transfer and distribution of A and b, as well as the time for the collection and
data transfer of . These data communications constitute the major overhead
in using SILC. However, as indicated by the proportion C' in Table 3, the cost
of data communications becomes relatively smaller as dimension N increases,
because the solution of the dense linear system requires a computation time on
the order of O(N?), while the data communications take only O(N?) time. Since
the computation time can be significantly reduced by using a faster computing
environment via SILC, some speedups are expected to be achieved even at the
cost of data communications when N is large. This holds true for the experi-
mental results shown in Table 3 — the speedups in the case of N = 8,000 were
1.43 with the SILC server in Xeon8 and 2.69 with the server in Altix.

3.2 Problem 2: Solution of an Initial Value Problem of a PDE

. 2 2
We solve the two-dimensional time-dependent diffusion equation %’; = % + 273

(t > 0) in the region 0 < 2 <1 and 0 < y < 1 subject to the initial condition

1 if | — 0.5/ < 0.1 and |y — 0.5 < 0.1,
0 otherwise,

u(z, y, 0) = {

and boundary conditions u(0, y, t) = u(1, y,t) = u(z, 0,¢) = u(z, 1,t) =0
for ¢ > 0, using the Crank-Nicolson method [4]. Suppose to = 0 is the initial
time and At > 0 is a constant time interval, and define the k-th time step as
ty = tx_1+At. In using the Crank-Nicolson method, we have to solve a system of
linear equations Ax; = by for each time step, where A is an N x N sparse matrix
and by and x; are N-vectors. by, is defined as b, = Cxy_1, i.e. the matrix-vector
product of another N x N sparse matrix C' and the solution xj_1 at t5_,. We
prepared the following two user programs, both of which are sequential programs
written in C.

Table 4. The computing environments used for Problem 2.

Label User program SILC server Configuration
Trad. Py in Xeond (1 PE) - -

SILC (local) P, in Xeon4 (1 PE) | Xeond (4 PEs) (A)
SILC (remote #1) | P, in Xeon4 (1 PE) | Xeon8 (8 PEs) (A)
SILC (remote #2) | P, in Xeond (1 PE) | Altix (16 PEs) (A)

Table 5. The results of Problem 2 (solution of an initial value problem of a PDE). T’
is execution time in seconds, S is speedup, and C' is communication overhead.

Trad. SILC (local) SILC (remote #1) SILC (remote #2)
N T T (S) C T (S) C T (S) C
10,000 | 0.432| 0.693 (0.62) 46.54% | 1.040 (0.42) 41.34% | 0.423 (1.02) 56.8%
40,000| 5.019| 3.164 (1.59) 33.55% | 3.756 (1.34) 39.32% | 1.209 (4.15) 38.2%
90,000 | 19.206 | 8.587 (2.24) 28.83% | 7.402 (2.59) 24.08% | 2.981 (6.44) 31.1%
)) (7.09)
)) (7.54)

160,000 | 43.118 | 17.617 (2.45) 22.72% |13.850 (3.11) 22.69% | 6.078 (7.09) 27.1%
250,000 | 82.798 | 30.627 (2.70) 17.78% |22.505 (3.68) 19.77% |10.987 (7.54) 23.1%

o~~~ —
A~ NS N

Program Py in the traditional programming style.

1. Prepare matrices A and C and the initial solution x(at tg. The matrices are
stored in the Compressed Row Storage (CRS) format [5].
2. For each time step ¢ (k=1,2,3,...):
(a) Compute by = Cxp_1 using the sparse matrix-vector product routine in
the sequential version of an iterative solvers library Lis [6].
(b) Solve Axj = by, using the Conjugate Gradient (CG) method [5] in Lis
with a zero initial guess.

Program Py in the SILC framework.

1. Prepare matrices A and C and vector x(in the same way as P;.
2. Send A, C, and xg to a SILC server using SILC_PUT. In the server, the data
is distributed among the server processes.
3. For each time step ¢ (k=1, 2,3, ...):
(a) Send a request for computation by SILC_EXEC to compute by, = Cxp_q
using a parallel sparse matrix-vector product routine.
(b) Send another request with SILC_EXEC to solve Axj = by using the CG
method in the MPI-based parallel version of Lis with a zero initial guess.
(¢) Receive x, from the SILC server using SILC_GET.

The library routines used by P, are sequential, whereas those carried out by
the SILC server are MPI-based parallel routines. Table 4 shows the computing
environments used for Problem 2. We executed both P; and P, in a node of
Xeon4 using a single processor, and measured their execution times for the first
40 time steps using the gettimeofday system call. We used the same SILC
servers as those in Problem 1 to run P;. Since P; is a sequential program, this
configuration corresponds to Configuration (A) shown in Fig. 2.

Table 5 shows the experimental results. In comparison with Program P, for
Problem 1, P, for this problem consumed a relatively large proportion of the
execution time in depositing A, C, and x(into the server and fetching xj for
each time step. Suppose K = 40 is the number of time steps, « is the iteration
count of the CG method, and 3 = 5N —4v/N is the number of non-zero elements
in A and C. Then, the number of floating-point operations for sparse matrix-
vector product Cxy_; is 203, while that for solving Axy = by with the CG
method is 4N + (26 + 12N + 3). Therefore, the matrix computations in P; and
P, require a computation time on the order of O(aK N). On the other hand,
data communications between P, and a SILC server require a communication
time on the order of O(K N). That is, the ratio of the computation time to the
communication time is almost proportional to «, which is small compared to N in
this test problem. In other words, this problem is somewhat disadvantageous to
SILC in the sense that P, can hardly yield a speedup in the first place. However,
in the experiments we observed speedups of 3.68 using the SILC server in Xeon8
and 7.54 using the server in Altix in the case of N = 250,000, by means of faster
matrix computations in these remote computing environments.

3.3 Observations

The experimental results of the two test problems showed that the implemented
SILC system is capable of achieving speedups when it deals with large problems.
Although SILC imposes some communication overhead due to the data trans-
fer between a user program and a SILC server, the overhead can be offset by
speedups through the faster matrix computation libraries and computing envi-
ronment that SILC makes available. The overhead can also be reduced by means
of a faster interconnect between the user program and the server.

In addition to the quantitative benefit of speedups, SILC also provides a
qualitative benefit in that it enables MPI-based parallel matrix computation
libraries to be used not only in MPI-based parallel user programs but also in
sequential user programs. In fact, P, in Problem 1 was an MPI-based parallel
program, while P, in Problem 2 was a sequential program. The former used
ScaLAPACK and the latter employed Lis, both in a remote MPI-based parallel
computing environment. Since the SILC server to be used by a user program
can be specified outside the user program, various computing environments as
well as the matrix computation libraries that are available in the computing
environments can be evaluated one after another without any modification to
the user program.

4 Related Work

Improving the utility of matrix computation libraries is a major research topic
in the areas of high-performance computing and Grid computing.

The Trilinos project [7] has been proposing a framework for integrating ma-
trix computation libraries into a C++ class library and developing a number

of libraries for numerical linear algebra. The application programming interface
(API) of each library is consistent with others’ in terms of (1) common data
structures of matrices and vectors, and (2) common abstract classes based on
which users define solvers by inheritance. The libraries are also organized as
Trilinos packages by means of (3) common directory structures and installation
procedures. However, the libraries vary in the details of their APIs; for example,
the API of a dense direct solvers library and that of an iterative solvers library,
both developed in the Trilinos project, are not exactly the same, so that users
are required to modify their user programs to utilize one library instead of the
other in use. In SILC, requests for computation are issued by means of textual
mathematical expressions through which any libraries (even having incompatible
APIs) can be utilized in the same way in any programming languages.

Amesos [8] is a C++ class library which gives access to various direct linear
solvers through a common API. The library provides good support for many ex-
isting libraries based on different parallelization techniques, including sequential
libraries such as LAPACK and parallel libraries such as ScaLAPACK. Amesos
focuses on direct solvers for dense matrices, whereas SILC provides support for
a wider range of matrix computations in a language-independent manner.

Since SILC is a piece of middleware based on a client-server architecture, our
framework shares some functionalities with Grid computing middleware such
as Ninf-G [9] and NetSolve [10]. Ninf-G is a middleware system for realizing
Remote Procedure Call (RPC) in Grid computing environments. Ninf-G allows
user programs to carry out MPI-based parallel matrix computation libraries in
remote distributed parallel computing environments. In Ninf-G, a particular call
for a remote procedure takes place in one process; that is, RPC is carried out
sequentially either in a sequential user program or in a process of an MPI-based
parallel user program [11]. All input and output data is once gathered to one of
the remote processes by which the remote procedure is carried out in parallel.
In addition, users are required to specify the ways of distributing the input
data to the other processes as well as of collecting output data to the sending
process, both by means of Ninf-G’s interface description language. In contrast,
SILC enables data transfer between a user program and a SILC server to be
performed in parallel by means of Configuration (B) shown in Fig. 2, allowing
the user program and the server to avoid the data redistribution to/from one
process before the data transfer. Moreover, users do not have to care about the
details of the data redistribution on the server side as long as supported matrix
storage formats are in use.

5 Concluding Remarks

This paper described the design and implementation of a SILC system for dis-
tributed parallel computing environments. By using this system, MPI-based par-
allel matrix computation libraries can be utilized not only in MPI-based parallel
user programs but also in sequential user programs. Moreover, no modification to
the user programs is required to make use of different computing environments.

10

The experimental results of two test problems showed that some speedups are
feasible by using faster matrix computation libraries in distributed parallel com-
puting environments via SILC, provided that the amount of matrix computations
is large enough to reduce the relative amount of communication overhead due
to data transfer between a user program and a SILC server. In the experiments,
the implemented SILC system achieved speedups of 2.69 in Problem 1 using
ScaLAPACK and 7.54 in Problem 2 using an iterative solvers library Lis, both
through a remote SILC server that runs on 16 processes.

The primary subjects of our future study include an implementation of Con-
figuration (C) shown in Fig. 2, a quantitative analysis concerning the cost of data
communications, a proposal of a performance evaluation model for distributed
SILC with emphasis on the communication overhead [12], and the development
of plug-in modules for integrating various existing matrix computation libraries
into the SILC framework.

Acknowledgments. The authors would like to thank the session chairperson
Dr. Xiaoye Sherry Li and anonymous reviewers for insightful remarks. This re-
search was supported by a grant [13] from the Core Research for Evolutional
Science and Technology (CREST) of the Japan Science and Technology Agency.

References

1. Kajiyama, T., Nukada, A., Hasegawa, H., Suda, R., Nishida, A.: SILC: Flexible
and environment independent interface for matrix computation libraries. In: Proc.
PPAM 2005, LNCS 3911. (2006) 928-935 http://ssi.is.s.u-tokyo.ac.jp/silc/.

2. Kajiyama, T., Nukada, A., Hasegawa, H., Suda, R., Nishida, A.: LAPACK in
SILC: Use of a flexible application framework for matrix computation libraries. In:
Proc. HPC Asia 2005. (2005) 205-212

3. Blackford, L.S., et al.: ScaLAPACK Users’ Guide. STAM (1997)

4. Smith, G.D.: Numerical Solution of Partial Differential Equations. Oxford Uni-
versity Press (1965)

5. Barrett, R., et al.: Templates for the Solution of Linear Systems: Building Blocks
for Iterative Methods. STAM (1994)

6. SSI Project: User’s Manual for Lis 1.0.2. (2006) http://ssi.is.s.u-tokyo.ac.jp/lis/.

7. Heroux, M. A.; et al.: An overview of the Trilinos project. ACM Transactions on
Mathematical Software 31 (2005) 397-423

8. Sala, M.: On the design of interfaces to serial and parallel direct solver libraries.
Technical Report SAND—-2005-4239, Sandia National Laboratories (2005)

9. Ninf Project: http://ninf.apgrid.org/.

10. NetSolve: http://icl.cs.utk.edu/netsolve/.

11. Takemiya, H., Tanaka, Y., Nakada, H., Sekiguchi, S.: Development and execution of
large scale grid applications using MPI and GridRPC: Hybrid QM /MD simulation.
IPSJ Trans. on Advanced Computing Systems 46 (2005) 384-395 in Japanese.

12. Kajiyama, T., Nukada, A., Hasegawa, H., Suda, R., Nishida, A.: A performance
evaluation model for the SILC matrix computation framework. In: Proc. IFIP Intl.
Conf. on Network and Parallel Computing. (2006) 93-103

13. Nishida, A., Kotakemori, H., Kajiyama, T., Nukada, A.: Scalable software infra-
structure project. In: Proc. SC06, poster. (2006)

