Toward Automatic Performance Tuning for
Numerical Simulations in the SILC Matrix
Computation Framework

Tamito KAJIYAMAN?, Akira NUKADA'2, Reiji SUDA%!,
Hidehiko HASEGAWA?3, and Akira NISHIDA?!

! CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
2 The University of Tokyo, Tokyo 113-8656, Japan
3 University of Tsukuba, Ibaraki 305-8550, Japan

1 Introduction

Numerical simulations are important techniques that reduce the costs of exper-
imentation in various scientific and industrial fields. A common feature in many
applications of numerical simulations is the appearance of partial differential
equations (PDEs) as a mathematical model of phenomena to be simulated. Dis-
cretizing the PDEs results in systems of linear equations, which are solved by
some linear solvers to obtain numerical solutions of the original PDEs. Numerical
simulations roughly fall into two categories: one category is of those simulations
that investigate the steady states of phenomena, and the other is of those for
simulating the non-steady states that evolve over time. Simulations of steady-
state linear problems usually require one linear system to be solved. On the other
hand, simulations of steady-state non-linear problems, as well as time-dependent
simulations of non-steady states, require a number of linear systems to be solved
one after another.

Solving linear systems constitutes a major part of the execution time of
numerical simulations, so that it is crucial to solve the linear systems efficiently.
To make this possible, many linear solvers have been proposed. Some of the
linear solvers are provided in the form of matrix computation libraries, which
reduce the burden of writing application programs for numerical simulations
on one hand. The availability of various libraries, on the other hand, makes it
difficult to try out alternative libraries to find the best one. This situation is
worsen by the diversity of computing environments from desktop PCs to high-
performance computing environments, as well as interoperability issues due to
mixture of different programming languages.

To relieve the difficulties associated with the use of matrix computation li-
braries and to facilitate the development of application programs for numerical
simulations, the authors have been proposing a matrix computation framework
named Simple Interface for Library Collections (SILC) [1,2]. The SILC frame-
work is a piece of middleware to be present between users’ application pro-
grams and the matrix computation libraries to be used, allowing the users to

write their application programs independently of particular libraries, comput-
ing environments, and programming languages. SILC is currently implemented
based on a client-server architecture, in which application programs of SILC
are clients of a SILC server. There are three types of SILC servers available:
sequential servers that run on uniprocessor machines, OpenMP-based parallel
servers for shared-memory parallel machines, and MPI-based parallel servers for
distributed parallel computing environments. SILC clients are either sequential
or MPI-based parallel programs. In this paper, we focus on a sequential SILC
client and OpenMP-based parallel (multithreaded) SILC server.

The purpose of the paper is to present a method for obtaining a performance
model of a SILC client that conducts a numerical simulation in the SILC frame-
work. The performance model to be obtained describes the execution time of a
SILC client in terms of the number of threads on which a parallel SILC server
runs (in this paper, we use the terms “thread” and “processor” interchangeably,
assuming that at most one thread is assigned to a processor). The obtained per-
formance model is then used to determine the optimal number of threads for
the particular combination of the SILC client and server. Finally, based on this
performance modeling method, we propose an automatic performance tuning
mechanism for numerical simulations in SILC.

2 The SILC Matrix Computation Framework

SILC is a client-server system in which SILC clients (i.e., users’ application pro-
grams) utilize matrix computation libraries through a SILC server. SILC clients
first deposit data (such as matrices and vectors) into a SILC server together with
names for later reference. Next, the clients make a series of requests for compu-
tation (such as solution of linear systems) by means of textural mathematical
expressions. These computation requests are translated into calls for appropriate
library functions and carried out on the server side. Finally, the clients retrieve
the computation results (if necessary) from the server.

In SILC, solution of a linear system Ax = b can be requested by a textual
mathematical expression like “x = A \ b”, where A is a coefficient matrix, b is
a right-hand side vector, and « is a solution vector. In the textual expression,
A and b are previously defined names and new variable x is defined. Both dense
and sparse linear systems can be handled by the same expression shown above.
Selection of linear solvers is automatic in such a way that dense linear systems
are solved by LU factorization, while iterative methods are employed for sparse
linear systems. The selection of linear solvers are also configurable by users by
means of the prefer statement. If there are alternative libraries having a com-
mon linear solver, users can choose a desirable library in such an expression
like “prefer leq_lis”, where leq_lis is an iterative solvers library available
in SILC. In the requests that follow the prefer statement, linear systems are
solved by means of the specified library. Besides the solution of linear systems,
SILC provides a rich set of operators and built-in functions for expressing com-
putation requests, as well as good support for various data types, matrix storage

formats, and arithmetic precisions. Even the entire application program of a nu-
merical simulation can be implemented only by means of SILC’s mathematical
expressions.

The primary cost in using SILC is the communication time required for data
transfer between a client and a server. However, matrix computations have a
characteristic that they tend to be time-consuming even with a small amount
of input data. For instance, solving a dense linear system with n unknowns
takes O(n?®) time, while the size of input data is on the order of O(n?). Since
the communication time is almost proportional to the data size, using a parallel
SILC server leads to a significant reduction of computation time. Similar analysis
can be made with regard to sparse linear systems. In many cases, the cost of
data transfer in SILC can be canceled with a speedup by parallel computation
in the parallel SILC server.

To obtain the maximum performance of parallel computation, on the other
hand, how many threads should be used is not a trivial question. There are cases
that using all of the available processors in a parallel machine results in poor
performance. Therefore, we need to know the optimal number of threads that a
parallel SILC server can achieve the best performance in order to maximize the
speedup by means of parallel computation. The optimal number of threads de-
pends on not only the computing environment and matrix computation libraries
to be used, but also the problem to be solved (i.e., a particular application of
numerical simulations), so that it is necessary for the SILC framework to have a
mechanism for automatic performance tuning that allows a parallel SILC server
to determine the optimal number of threads at run time according to the problem
in hand.

Bringing automatic performance tuning to the SILC framework is beneficial
from users’ viewpoint. SILC is in fact an abstraction layer that hides the details
of matrix computation libraries and underlying computing environments. Users
can make computation requests without knowing exactly what is going on under
the abstraction layer, which gives a SILC server a good deal of opportunity to
do automatic performance tuning. The server can automatically perform various
kinds of performance tuning independently of users’ application programs. Users
do not have to modify their application programs in order to tune performance.
The SILC framework establishes an ideal foundation in which the automatic
performance tuning technology can be put to good use.

3 Performance Modeling

The execution time of a SILC client is modeled as a function in terms of the
number of threads p on which a parallel SILC server runs:

flp)=a/p+bp+tec (1)

where a/p is part of computation time that is parallelized, bp is parallelization
overhead that is proportional to the number of threads, and ¢ includes time for

sequential, non-parallelizable computation as well as communication time for
data transfer between the client and the server (a, b, ¢ > 0).

Suppose that we have measured the execution time of a SILC client by means
of a parallel SILC server running on n different numbers of threads. Let f; be
the measured execution time in the case of p = p; (1 < j < n). Based on these
n samples of the measured execution time, the three unknown coefficients a, b,
and ¢ in Equation (1) can be determined by the least square method [3].

Having the function f with the three coefficients determined, we estimate
the optimal number of threads that leads to the minimum execution time. Since
p > 0 and thus f(p) > 0, the necessary condition for the minimum f(p) is

df 9
- = +b=0.
7 a/p 0

By solving the equation for p, we find the optimal number of threads as follows:

bon =1/ 2)

3.1 Examples

As a practical example of the performance modeling presented above, we take
a SILC client that carries out a time-dependent numerical simulation of cloth
motion [2]. The simulation employs a mass-spring model which represents the
geometry of cloth as a mesh of particles connected by springs. The motion of
the cloth (governed by Newton’s law of motion) is computed by the backward
implicit Euler method [4].

The algorithm of the cloth simulation is briefly described as follows. Let
N be the number of particles and ; € R> be a position vector for particle i
(1 < i < N). The geometry of the entire cloth is simply denoted by x € R3".
Similarly, v; € R? represents the velocity of particle i and those of all particles
are simply denoted by v € R3*Y. Let At > 0 be a constant time interval and
and vg be the position and velocity of the cloth at the end of the previous time
step. The main loop over time steps consists of the following three steps:

Step 1. Compute force f = f(x, v) that acts on the cloth, and its derivatives
Of /0x and Of /0v. The force is calculated particle-wise as follows. Let P; be a
set of particles that are connected to particle i. Then, the force f; that acts on
particle 4 is defined as a sum of spring force f;; and damping force d;; between
each pair of particles i and j that are connected by spring & as follows:

fi=> (fij+di)
JEPR;

Fij = br(lxj — zi| — k)

dij = —hy(v; — vj)

mjf:ci

|z —

where by, is a spring constant, hy is a damping constant, and [j is a rest length
of spring k. The derivatives 0f /0x and 0f/0v are Jacobian matrices [5], each
of which consists of N2 submatrices as follows:

Ofr ... Ofa Ofr .. Ofa
af B 82’.61 8:1!1\] af B 61.71 a’UN
ox : : " ov : -

9fn ... OfnN 9fn ... Ofn

ox oz N vy ovn

Off-diagonal submatrices are defined as follows:

of bklk|{1_ (wj—wi)(wj—f"i)T}, O _

=bil —
ailtj k |£L'j — &I; |£L'j — $i|2 8vj

where I is a 3 X 3 unit matrix. Diagonal submatrices are defined in terms of
off-diagonal ones as follows:

ofi _ ofi Ofi _ of i
6181' ; 858]" 8’1)i ; 6vj

J J

P i

Step 2. Solve a linear system AAwv = b to find a change in velocity Av, where

of of

_ _ 27J -4

A=M— At e Atav
ox

and M is a 3N x 3N diagonal matrix that represents the mass of particles. The
linear system is solved by the Conjugate Gradient (CG) method [6] since A is
sparse and symmetric positive definite.

Step 3. Update velocity v and position x as follows:

v =1v9+ Av
T =z + (vg + Av)At

(]
The SILC client is written in C and the entire simulation is implemented
by means of SILC’s mathematical expressions. For each time step, the SILC
client makes a fixed number of requests for computation including a solution of
a sparse linear system as well as sparse matrix additions and multiplications for
creating the coefficient matrix and right-hand vector of the linear system.
Table 1 shows the measured execution time of the SILC client executed on
a laptop PC (Intel Pentium M 1.10 GHz, 768 MB RAM, Windows XP SP2) to-
gether with a parallel SILC server running on SGI Altix 3700 (32 Intel Itanium 2
1.3 GHz processors, 32 GB RAM, Red Hat Linux AS 2.1). The client and server
machines are in the same Fast Ethernet (100 Mbps) LAN. In addition, the CG
method of the Lis iterative solvers library [7] was used to solve a linear system

Table 1. The measured execution time of a SILC client together with a parallel SILC
server running on different numbers of threads.

Number of threads 1 2 4 8 16
Execution time (in seconds) 13.636 7.354 4.419 3.153 3.226

for each time step. The SILC client was build with MinGW (GCC 3.2.3), while
the server and Lis were compiled using Intel C Itanium compiler version 9.1 to-
gether with -03 optimization option. The number of particles (i.e., the problem
size) is 1,024 and thus the dimension of the linear system is 3,072.

Using the least square method and the 5 samples of the measured execution
time in Table 1, we determine the three unknowns in (1) as follows. Let ¢ be the
sum of squared differences between f; and f(p;):

n

g=> (fi—a/p; —bp; —)

j=1

We want to minimize ¢ to obtain the best possible performance model of the
SILC client. Since q is a convex function, the necessary conditions for the mini-
mum q are as follows:

dq -1 -1
%=—2ij (fj —ap;” —bpj —c)=0

O0q _1

T%:—QE pi(fj —ap; " —bpj —c)=0
Jq -1

%:—22 (fj—apj —bpj —c)=0

Each summation is computed from 1 to n. By separating each summation into
four terms and moving terms including the unknowns to the left-hand side, we

have) L)
ay.p;-+bn +cyop; =3 fip;
an +03 P +cXp; =2 fip (3)
aYp;t +0 piten =X
Based on the data shown in Table 1, we also have
n=>5
> py?=1.33203125
> pyt=1.9375

> pp =341
ij =31

3 fipyt = 19.01205319

Obtained performance model —
14 | Measured execution time

Execution time (in seconds)

Number of threads

Fig. 1. The obtained performance model in (4), plotted together with the measured
execution time shown in Table 1.

> fipj = 122.856456
> f; = 31787137

Substituting them into (3) yields a linear system with regard to the three un-
knowns. By solving this linear system, we have a = 12.751, b = 0.102, and
¢ = 0.784. Thus, the execution time of the SILC client is modeled as follows:

fp) = 12.751/p +0.102p + 0.784 (4)

We also have ¢ = 3.400 x 1073, Figure 1 shows a plot of the equation together
with the data in Table 1.

Equation (2) gives the optimal number of threads ¢,,; = 11.176 and thus
f(11.176) = 3.06542. In reality, however, the number of threads must be integer,
so that we determine which of |¢pe | = 11 and [¢epe] = 12 leads to the shorter
execution time.

£(11) = 3.06571
£(12) = 3.07119

Therefore, the optimal number of threads in this example is expected to be
Dopt = 11. Table 2 shows the measured execution time of the SILC client in the
case of p = pope = 2. These supplementary experimental results confirm that the
estimated number of threads is certainly optimal. The relative error of f(11) is
3.010 x 103, which shows that the obtained performance model is accurate.
We also examined the performance modeling method with different samples
of the measured execution time of the same SILC client. We changed the client
machines from the laptop machine to a desktop PC (Intel Pentium 4 3.4 GHz, 1
GB RAM), which has a Gigabit Ethernet (1 Gbps) connection to the server ma-
chine (SGI Altix 3700) in the same LAN. Based on five samples of the measured

Table 2. Supplementary experimental results for confirming the optimal number of
threads pop: = 11.

Number of threads 9 10 11 12 13
Execution time (in seconds) 3.216 3.123 3.057 3.081 3.158

execution time with different numbers of threads from 1 to 16, we obtained a
performance model of the SILC client as follows:

£(p) = 12.540/p + 0.103p + 0.838

We also have ¢ = 1.117 x 1072, Since Gopt = 1/12.540/0.103 = 11.040 and
f(11) = 3.11011 < f(12) = 3.11799, we estimated the optimal number of threads
is popt = 11. Based on supplementary experimental results in the case of p =
Popt £2, we confirmed that the estimate was accurate. The relative error in f(11)
is 9.369 x 1073, which shows that the estimate is accurate.

4 Automatic Performance Tuning for Numerical
Simulations in SILC

Based on the performance modeling presented in the previous section, we plan
to implement a simple mechanism for automatic performance tuning in the SILC
framework. We consider a SILC client that conducts a time-dependent numerical
simulation by means of a parallel SILC server. Performance tuning is automati-
cally carried out on the server side independently of the SILC client as follows:

1. For the first mn time steps of the simulation, the SILC server automatically
collects n samples of the measured execution time with different number of
number of threads (e.g., 1, 2, 4, ..., 2"~ 1). For each number of threads, the
server tries to measure the execution time of a single time step m times and
pick the shortest execution time as the sample with regard to the number of
threads.

2. The server obtains the performance model of the SILC client based on the
measured execution time and estimates the optimal number of threads for
the simulation.

3. The server carries out the rest of the simulation on the optimal number of
threads.

Implementation of the performance tuning mechanism is part of our future
work. We also need to devise a method for automatically choosing reasonable
values for the number of trials m and the number of samples n, since lots of
trials for many samples with non-optimal numbers of threads may significantly
increase the cost of automatic performance tuning.

5 Related Work

Accurate prediction of execution time based on the performance modeling of ap-
plication programs is a major research topic in the area of automatic performance
tuning. To achieve the optimal performance tuning, many approaches have been
proposed based on collection of performance information prior to the execution
of application programs, extensive analysis of application codes, employment of
detailed model parameters, and so on. For example, the Performance Analysis
and Characterization Environment (PACE) [8] conducts the performance mod-
eling of a user program based on semi-automated analysis of task dependency
and communication patterns in the user program. The results of the code anal-
ysis, combined with predefined hardware models, are then used to control the
user program during its execution so that the optimal performance is achieved.

In contrast, our performance modeling method is quite simple. Although ad-
ditional experiments would be needed for more validation of performance models
to be obtained, the initial experimental results in the previous section suggested
that our method is promising. Moreover, the primary objective of the SILC
framework is to achieve a high degree of independence from particular libraries,
computing environments, and programming languages. SILC is meant to allow
users to write user programs in any programming language without caring about
the libraries and underlying computing environments in use. That is why we have
taken the present approach to automatic performance tuning, i.e. based on a sim-
ple performance model that does not require detailed performance parameters
with regard to user programs, together with a performance tuning mechanism
that can be largely implemented on the server side.

6 Concluding Remarks

In this paper, we presented a method for performance modeling for numerical
simulations in the SILC framework. Experimental results with a SILC client
for cloth simulation showed that our performance modeling yields an accurate
performance model of the SILC application. We also outlined a performance
tuning mechanism for time-dependent numerical simulations in SILC.

In the presentation in the workshop, we will further examine the accuracy
and usefulness of our performance modeling method with other examples of
numerical simulations in SILC.

Acknowledgment. This research was supported by a grant [9] from the Core
Research for Evolutional Science and Technology (CREST) program of the Japan
Science and Technology Agency.

References

1. Kajiyama, T., Nukada, A., Hasegawa, H., Suda, R., Nishida, A.: SILC: A flexi-
ble and environment independent interface for matrix computation libraries. In:

Proc. PPAM 2005, LNCS 3911. (2006) 928-935

. Kajiyama, T., Nukada, A., Suda, R., Hasegawa, H., Nishida, A.: Cloth simulation
in the SILC matrix computation framework: A case study. In: Proc. PPAM 2007,
LNCS, Springer. (to appear)

. Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition. Wiley (1999)

. Baraff, D., Witkin, A.: Large steps in cloth simulation. In: Proc. ACM SIGGRAPH
’98. (1998) 43-54

. Lang, S.: Calculus of Several Variables, 2nd Edition. Addison-Wesley (1979)

. Barrett, R., et al.: Templates for the Solution of Linear Systems: Building Blocks
for Iterative Methods. SIAM (1994)

. SSI Project: User’s Manual for Lis 1.0.2. (2006) http://ssi.is.s.u-tokyo.ac.jp/lis/.

. Kerbyson, D., Papaefstathiou, E., Nudd, G.: Application execution steering using
on-the-fly performance prediction. In: Proc. HPCN’98, LNCS 1401. (1998) 718-727
. Nishida, A., Kotakemori, H., Kajiyama, T., Nukada, A.: Scalable software infra-
structure project. In: Proc. SC06, poster. (2006) http://ssi.is.s.u-tokyo.ac.jp/.

