
Cloth Simulation in the SILC Matrix
Computation Framework: A Case Study

Tamito KAJIYAMA1,2, Akira NUKADA1,2, Reiji SUDA2,1,
Hidehiko HASEGAWA3, and Akira NISHIDA2,1

1 CREST, Japan Science and Technology Agency, Saitama 332–0012, Japan
2 The University of Tokyo, Tokyo 113–8656, Japan
3 University of Tsukuba, Ibaraki 305–8550, Japan

Abstract. This paper presents a case study of numerical simulations in
an easy-to-use matrix computation framework named Simple Interface
for Library Collections (SILC), which allows users to use various ma-
trix computation libraries in an environment- and language-independent
manner. As a practical example of numerical simulations in SILC, we
selected cloth simulation based on a mass-spring model and the implicit
backward Euler method. We constructed two SILC-based versions of an
existing cloth simulation code according to two proposed application
styles of SILC. Experimental results showed that both versions achieved
some performance gains, thereby demonstrating the feasibility of numer-
ical simulations in SILC and the usability of the proposed application
styles.

1 Introduction

Matrix computations such as solutions of linear systems and eigenvalue analyses
are key components of numerical simulations being conducted in various scientific
and industrial fields; thus, an increasing number of matrix computation libraries
have been developed to facilitate the development of numerical simulation codes.
However, the application programming interfaces (APIs) of the libraries are not
generally uniform, which makes it quite costly to employ the libraries to develop
and maintain simulation codes. It is burdensome for users to have to learn a
number of different library-specific APIs in order to write simulation codes using
these libraries. In addition, there are numerous reasons why users must switch
from one library to another (e.g., in order to switch computing environments,
to try out alternative libraries for better performance, and so on). In such cases,
users are required to make considerable modifications to the simulation codes,
since the codes usually depend on the particular libraries in use.

To relieve the burden of writing simulation codes based directly on library-
specific APIs, the authors have been proposing an easy-to-use matrix compu-
tation framework named Simple Interface for Library Collections (SILC) [1]. In
short, SILC is a piece of middleware that gives access to various matrix compu-
tation libraries in an environment- and language-independent manner. With the
aim of setting some guidelines for SILC users, we have also been proposing two
applications styles for writing simulation codes within the SILC framework [2].

The purpose of the present paper is to verify the effectiveness of the proposed
framework and its application styles through a case study in numerical simula-
tion. As a practical example of numerical simulations in SILC, we have selected
cloth simulation that is an important technology widely used in many academic
and industrial fields including computer graphics and the fashion industry. We
have developed two SILC-based versions of an existing cloth simulation code
written in C according to the proposed application styles. In the rest of the
paper, we describe how SILC was applied to the original cloth simulation code,
and present some experimental results. We also make a brief survey of related
work and finally draw some conclusions.

2 Overview of the SILC Matrix Computation Framework

Simple Interface for Library Collections (SILC) is a matrix computation frame-
work that allows users to use various matrix computation libraries independently
of particular libraries, computing environments, and programming languages.
SILC is currently implemented based on a client-server architecture. Instead of
using matrix computation libraries through library-specific APIs, user programs
for SILC (i.e., simulation codes in the SILC framework) utilize libraries in the
following three steps. First, the user programs deposit data such as matrices
and vectors into a SILC server, together with names for later reference. Next,
the user programs make requests for computation by means of mathematical
expressions in the form of text. These computation requests are translated into
calls for appropriate library functions and carried out on the server side. Finally,
the user programs retrieve the results of the computation (if necessary) from the
server by specifying the names of the computation results to be retrieved. The
computation results are kept in the server unless they are explicitly deleted.

Figure 1 shows a user program written in C in the SILC framework. This
program solves an initial value problem of a two-dimensional diffusion equation
using the Crank-Nicolson method. Suppose that t0 is the initial time and ∆t > 0
is a constant time interval. The Crank-Nicolson method requires the solution of a
linear system Axk = Cxk−1 for each time step tk = tk−1 +∆t (k = 1, 2, 3, . . .),
where A and C are sparse matrices. The user program first deposits A, C, and
the initial values x0 at t0 into a SILC server by three separate calls for the
SILC_PUT routine. Then for each time step tk, the program issues a request to
solve Axk = Cxk−1 using the SILC_EXEC routine. The computation request
results in calls for some library functions, which are carried out in the server.
After that, the program fetches the solution xk at tk by the SILC_GET routine.

The primary benefit of using SILC is independence from matrix computation
libraries, computing environments, and programming languages. User programs
for SILC do not depend on particular libraries and their underlying comput-
ing environments, as illustrated by the user program in Fig. 1. Sequential user
programs can automatically obtain performance gains by simply using a par-
allel SILC server. SILC is also independent of programming languages in the
sense that the same mathematical expressions can be used to make computation

silc_envelope_t A, C, x;

/* create matrices A, C, and the initial values x0 at time t0 */

SILC_PUT("A", &A);
SILC_PUT("C", &C);
SILC_PUT("x", &x); /* x0 */
for (k = 1; k <= num_time_steps; k++) {

SILC_EXEC("x = A \\ (C * x)");
SILC_GET(&x, "x"); /* solution xk at time tk */
/* output xk */

}

Fig. 1. An example of a user program for SILC, written in C, which solves an initial
value problem using the Crank-Nicolson method. The backslash operator for solving
linear systems is represented by a backslash, which is used to escape special characters
in string literals in C. Therefore, the operator is written as “\\” in the program.

requests from user programs in any programming language. Another benefit is
ease of use. SILC makes it easy to write user programs that utilize matrix com-
putation libraries, relieving users from the burden of using library-specific APIs
that differ prominently in terms of data structures for matrices and vectors,
parameters of library functions, compilation and linking procedures, and so on.

SILC comprises useful functionalities for matrix computations. Supported
data types include dense, band, and sparse matrices and vectors. Mathematical
expressions are composed of various math operators (such as arithmetic oper-
ators and the backslash operator for solving linear systems), built-in functions
(e.g., function norm2 computes the 2-norm of a vector), and subscripts (for ex-
ample, A[1:5, k:k+4] yields a 5 × 5 submatrix of A). There is no construct for
loops and conditional branching in the mathematical expressions of SILC, since
SILC is intended to be a replacement for library calls. Control flows are expressed
by the languages in which user programs are written, as shown in Fig. 1.

3 Two Application Styles of SILC

As a few basic guidelines on writing user programs for numerical simulations
in the SILC framework, we have been proposing two different application styles
(see Table 1 for a comparison of the two application styles).

Limited Application Style. User programs in this application style realize the
most time-consuming, computationally intensive part of the user programs by
depositing data into a SILC server, making requests for computation, and re-
trieving the results of the computation from the server. Those computations
that are hard to realize in terms of matrix computations are implemented in
the user programs by fetching data from the server and sending the results of
computation back to the server. The limited application style is easy to use, al-
though it imposes some communication overheads due to frequent data transfer
between the user programs and the server. In addition, the maximum amount of
data that can be handled is largely restricted by the memory capacity of a user
program.

Table 1. A comparison of the limited and comprehensive application styles.

Limited Comprehensive

Ease of application Easy Hard
The amount of data maintained by a user program Large Small
The amount of data maintained by a SILC server Small Large
The amount of data transfer Large Small
The amount of parallelizable computation Small Large

Comprehensive Application Style. User programs in this application style first
move all relevant data to a SILC server. After that, the user programs issue
a series of computation requests to control the server-side computations, while
having few data communications with the server in the middle of the simula-
tions. The comprehensive application style can be difficult to employ since all
computations are not necessarily easy to realize by means of SILC’s mathemati-
cal expressions. On the other hand, the comprehensive application style imposes
fewer communication overheads than the limited application style. The maxi-
mum amount of data mainly depends on the server’s memory capacity, so that
this application style allows a larger amount of data to be handled than the
limited application style. Moreover, the amount of parallelizable computation is
larger than in the limited application style, since most computations are done
on the server side.

4 Cloth Simulation in SILC

With the aim of exemplifying the usability of SILC in numerical simulations, we
applied the two application styles to an existing sequential cloth simulation code
written in C. The simulation code employs a mass-spring model to represent the
geometry of cloth and computes the motion of the cloth (governed by Newton’s
law of motion) based on the implicit backward Euler method [3].

The mass-spring model represents cloth as a mesh of n particles connected by
springs. Let xi ∈ R3 be a position vector that specifies the location of particle i.
We simply represent the geometry of the entire cloth by x ∈ R3n. Similarly,
we represent the velocity of particle i by vi ∈ R3 and those of all particles by
v ∈ R3n. Two particles are connected by a weightless spring k with a spring
constant bk, a damping constant hk, and a natural length lk.

In the implicit backward Euler method, we need to solve a linear system for
each time step. Let x0 and v0 be the position and velocity of the cloth at the
end of the previous time step. The main loop over time steps in the simulation
code consists of the following three steps:

Step 1. Compute force f = f(x, v) and its derivatives ∂f/∂x and ∂f/∂v. The
force f ∈ R3n that acts on the cloth is calculated particle-wise as follows. Let
Pi be the set of particles that are connected to particle i; then the force f i ∈ R3

that acts on particle i is defined as a sum of spring force f ij and damping force

dij between each pair of particles i and j connected by spring k:

f i =
∑
j∈Pi

(f ij + dij)

f ij = bk(|xj − xi| − lk)
xj − xi

|xj − xi|
dij = −hk(vi − vj)

The derivatives ∂f/∂x and ∂f/∂v are Jacobian matrices [4], each of which
consists of n2 submatrices as follows:

∂f

∂x
=


∂f1
∂x1

· · · ∂f1
∂xn

...
...

∂fn

∂x1
· · · ∂fn

∂xn

 ,
∂f

∂v
=


∂f1
∂v1

· · · ∂f1
∂vn

...
...

∂fn

∂v1
· · · ∂fn

∂vn


Off-diagonal submatrices are defined as follows:

∂f i

∂xj
= bkI − bklk

|xj − xi|

{
I − (xj − xi)(xj − xi)T

|xj − xi|2

}
,

∂f i

∂vj
= hkI

Diagonal submatrices are defined in terms of off-diagonal ones as follows:

∂f i

∂xi
= −

∑
j∈Pi

∂f i

∂xj
,

∂f i

∂vi
= −

∑
j∈Pi

∂f i

∂vj

Step 2. Solve a linear system A∆v = b to find a change in velocity ∆v, where

A = M − ∆t2
∂f

∂x
− ∆t

∂f

∂v

b =
{

f + ∆t
∂f

∂x
v0

}
∆t

and M is a diagonal matrix that represents the mass of particles. The linear
system is solved by the Conjugate Gradient (CG) method [5] since A is sparse
and symmetric positive definite.

Step 3. Update velocity v and position x as follows:

v = v0 + ∆v

x = x0 + v∆t

The most time-consuming, computationally intensive part of the original
simulation code is the second step, where solving linear systems takes about 80%
of the original code’s execution time. Therefore, we developed a SILC-based code
in the limited application style by rewriting the second step of the original code
by means of the SILC framework. Figure 2 (a) is part of the original code that
calls for lis_solve, a library function of the Lis iterative solvers library [6], to

LIS_MATRIX A; LIS_VECTOR b, dv;

for (k = 1; k <= num_time_steps; k++) {
/* 1. Compute f , ∂f/∂x, and ∂f/∂v */

:
/* 2. Solve A∆v = b */
lis_solve(A, b, dv,

lis_params,
lis_options,
lis_status);

/* 3. Update velocity v and position x */
:

}

(a) The original code

silc_evelope_t A, b, dv;

for (k = 1; k <= num_time_steps; k++) {
/* 1. Compute f , ∂f/∂x, and ∂f/∂v */

:
/* 2. Solve A∆v = b */
SILC_PUT("A", &A);
SILC_PUT("b", &b);
SILC_EXEC("dv = A \\ b");
SILC_GET(&dv, "dv");
/* 3. Update velocity v and position x */

:
}

(b) The SILC-based code

Fig. 2. The original code and the SILC-based code in the limited application style.

solve a linear system A∆v = b with the CG method. Figure 2 (b) is the same
part of the SILC-based code in the limited application style, where the linear
system is solved by depositing A and b into a SILC server, making a request for
it to solve the linear system, and fetching the solution ∆v from the server. In
both codes, A is stored in the Compressed Row Storage (CRS) format [7].

We also developed a SILC-based code in the comprehensive application style,
in which all relevant data is moved to a SILC server at the beginning of the
simulation code and all computations are realized by means of SILC’s math-
ematical expressions. The data transfer is performed in the initialization part
of the code. Some computations are also carried out during the initialization,
although most computations are concentrated in the main loop over time steps.
Figure 3 shows the iterative part of the code in the comprehensive application
style. The Jacobian ∂f/∂v, referred to as DfDv in the figure, is computed dur-
ing the initialization since it is constant. A few additional constant vectors and
matrices are also defined in the initialization part. All matrices involved in the
code are sparse and stored in the CRS format.

The mathematical expressions in Fig. 3 have been written so that data par-
allelism can be exploited as much as possible. For example, the mathematical
expressions in the first call for SILC_EXEC are requests for computing the distance
between two particles connected by a spring. Let s be the number of springs;
then matrix Y is a linear map for transforming x ∈ R3n into p ∈ R3s so that
each three elements of p represent xj − xi. The expression p @* p stands for
elementwise multiplication, and X_T is another linear map from R3s to Rs such
that multiplying it by a vector sums up each three elements of the vector. Fi-
nally, function sqrt computes the square root of each element in a given vector.
All these computations can be parallelized in a data-parallel manner.

5 Numerical Experiments

We conducted numerical experiments to investigate the performance of the SILC-
based simulation codes. Table 2 shows the computing environments used for
the experiments. We compared the performance of the original code and the

silc_envelope_t v, x;

/* Compute force f and Jacobian ∂f/∂x */
SILC_EXEC("p = Y * x; z = sqrt(X_T * (p *@ p))");
SILC_EXEC("fij = p *@ (X * (K_stiff *@ (z - L) /@ z))");
SILC_EXEC("dij = (Y * v) *@ (X * K_damp)");
SILC_EXEC("f = Mg - Y_T * (fij + dij)");

SILC_EXEC("zhat = ones(s, 1) /@ z");
SILC_EXEC("pzhat = p *@ (X * zhat)");
SILC_EXEC("U_L = sparse(U_L_row, U_col, pzhat, 3*n, s)");
SILC_EXEC("U_R = sparse(U_R_row, U_col, pzhat, 3*n, s)");
SILC_EXEC("U = U_L - U_R");
SILC_EXEC("tmp = zhat *@ K_stiff *@ L");
SILC_EXEC("T2 = Y_T * diag(X * tmp) * -Y");
SILC_EXEC("T3 = -U * diag(tmp) * U’");
SILC_EXEC("DfDx = T1 - T2 + T3");

/* Solve A∆v = b */
SILC_EXEC("A = M - (dt * dt) * DfDx - dt * DfDv");
SILC_EXEC("b = dt * (f + dt * (DfDx * v))");
SILC_EXEC("dv = A \\ b");

/* Update velocity v and position x */
SILC_EXEC("v += dv *@ fixed; x += dt * v");
SILC_GET(&v, "v");
SILC_GET(&x, "x");

Fig. 3. The SILC-based code in the comprehensive application style. Only the code
segment within the main loop of the simulation is shown.

SILC-based codes by running them on the same PC (Dell Dimension 8400) and
measuring their execution time for the first 20 time steps. The cloth used for
the experiments consisted of 10,000 particles. The SILC-based codes were tested
with two SILC servers, one in the same PC and another in SGI Altix 3700, both
in the same Gigabit Ethernet LAN. The original code and local SILC server in
the PC utilized a sequential version of the Lis iterative solvers library to solve
linear systems, while the remote server in Altix employed an OpenMP-based
parallel version of the same library. The execution time of the original code was
11.80 seconds; solving the linear systems took 81.70% of the execution time.

Table 3 shows the performance results of the SILC-based code in the limited
application style using the local SILC server in the same PC and the remote
SILC server running on different numbers of threads. The time spent for client-
side computations and the time for data transfer were almost constant regardless
of the number of threads, while the time spent for server-side computations was
significantly reduced by the multithreaded server. As a result, a total execution
time of 8.33 seconds was achieved by using the remote SILC server running on
16 threads. It constituted a 1.90 times speedup compared to the execution time
with the remote SILC server on one thread, and a 1.42 times speedup compared
to the original code.

Table 4 shows the performance results of the SILC-based code in the com-
prehensive application style using the local and remote SILC servers. There is
no client-side computation since all data is maintained by a SILC server; only
the velocity v and position x are retrieved from the server. The code showed
good scalability, thanks to the mathematical expressions written so as to ex-

Table 2. The computing environments used for the experiments.

Name Specifications

Dell Dimension 8400 Intel Pentium 4 3.4 GHz, 1 GB RAM, Windows XP SP2

SGI Altix 3700 Intel Itanium 2 1.3 GHz × 32, 32 GB RAM (cc-NUMA),
Red Hat Linux Advanced Server 2.1

Table 3. Performance results of the SILC-based code in the limited application style.
The three rows of client-side computations, data transfer, and server-side computations
show the breakdowns of the total execution times (in seconds).

SILC server Local Remote

Number of threads – 1 2 4 8 16 32

Client-side computations 1.94 2.13 2.17 2.08 2.11 2.10 2.04
Data transfer 3.36 4.11 4.05 4.21 5.24 5.20 5.59
Server-side computations 9.98 9.58 6.29 3.61 1.57 1.03 1.57

Total execution time 15.28 15.82 12.52 9.90 8.92 8.33 9.20
Speedup – 1.00 1.26 1.60 1.77 1.90 1.72

ploit data parallelism. However, the code was 2.09 times slower than the original
code even with the remote SILC server running on 32 threads. This is mainly
because of extra non-floating point operations present in the SILC-based code.
For example, the mathematical expressions in Fig. 3 include four matrix-matrix
multiplications, a transposition (by the ’ operator), and two calls for the sparse
function. All these operations create a sparse matrix in the CRS format as a re-
sult of computation through a number of non-floating point operations such as
counting non-zero elements to be generated and packing them per row.

As described in Section 3, on the other hand, the comprehensive application
style has certain advantages with regard to the amount of data on the client
side and the amount of data transfer. The amount of data maintained by the
SILC-based code in the limited application style is 16.8 MB, while the amount
of data in the SILC-based code in the comprehensive application style is 3.82
MB when data is deposited into a SILC server at the beginning of the code and
is reduced to 0.763 MB after the initialization. Similarly, the amount of data
transfer per time step is 17.7 MB in the case of the limited application style,
whereas it is 0.458 MB in the case of the comprehensive application style. These
advantages of the comprehensive application style allow a larger piece of cloth
to be simulated even in a PC with a restrictive memory capacity, together with
a remote SILC server running in a high-performance parallel computer.

6 Related Work

Since SILC is a piece of middleware based on a client-server architecture, it is
related to Grid RPC middleware such as Ninf-G [8] and NetSolve [9]. In these
systems, numerical simulation codes are usually parallelized in a task-parallel
manner. It is common in Grid computing to employ geographically distributed

Table 4. Performance results of the SILC-based code in the comprehensive application
style. The two rows of data transfer and server-side computations show the breakdowns
of the total execution times (in seconds).

SILC server Local Remote

Number of threads – 1 2 4 8 16 32

Data transfer 1.66 2.35 1.71 1.23 1.05 1.06 1.40
Server-side computation 434.91 335.09 238.49 114.67 56.46 32.23 23.27

Total execution time 436.57 337.44 240.20 115.90 57.51 33.28 24.67
Speedup – 1.00 1.40 2.91 5.87 10.14 13.68

servers, which makes it prohibitive to exchange data among the servers to per-
form computations in a data-parallel manner. To address this issue, Tanaka et
al. [10] proposed a hybrid programming model which combines Ninf-G and MPI.
In this model, tasks are sent to multiple servers via Grid RPC, while each task is
carried out within a server in a data-parallel manner based on MPI. In Ninf-G,
however, it is the user’s responsibility to write the MPI-based parallel codes the
servers perform. In SILC, computation requests are expressed by means of SILC’s
mathematical expressions and automatically parallelized in a data-parallel man-
ner, so that users can write numerical simulation codes without knowing the
details of parallel computations on the server side.

The use of mathematical expressions to express computation requests in an
environment-independent manner is closely related to parallel implementations
of Matlab. There are four major categories of parallel Matlab systems: (1) em-
barrassingly parallel, (2) message passing, (3) back-end support, and (4) Matlab
compilers [11]. Among them, those systems in the second and third categories are
relevant to SILC. A typical example in the second category is MatlabMPI [12],
which allows users to write MPI-based parallel codes in Matlab. User programs
for SILC can also be MPI-based parallel programs. In addition, SILC can be
used in sequential programs; if that is the case, users can automatically gain the
benefit of parallel computations by just using parallel SILC servers. The same
approach is taken by parallel Matlab systems of the third category. A represen-
tative system in this category is Star-P [13, 14] which enables a parallel back-end
server to be interactively utilized in Matlab. The most significant difference from
SILC is that in Star-P, local data in Matlab and remote data in the back-end
server are seamlessly handled in such a way that the data on both sides can be
referred to and used in one mathematical expression without any restriction. In
SILC, data management in a SILC server is completely separated from user pro-
grams. This design decision has made SILC’s client-side API relatively simple,
allowing the SILC framework to be used in a number of programming languages
including C, Fortran, Java, Python, and GNU Octave. In addition, user pro-
grams for SILC can be executed in large-scale distributed parallel computing
environments based on batch queuing systems [1]. In Star-P, the focus is on the
seamless integration of a back-end server with Matlab and their interactive uti-
lization, while SILC focuses on a higher degree of independence from computing
environments and programming languages.

7 Concluding Remarks

This paper presented a case study of numerical simulations in the SILC frame-
work. In this study, we adapted an existing cloth simulation code to the SILC
framework and obtained two SILC-based versions of the code according to the
proposed application styles. Using a remote parallel SILC server, the SILC-based
code in the limited application style outperformed the original code while the
SILC-based code in the comprehensive application style achieved good scalabil-
ity. These results demonstrate the feasibility of numerical simulations within the
SILC framework and the usability of the proposed application styles.

Our future work includes a performance evaluation of the SILC-based cloth
simulation codes in MPI-based parallel computing environments, performance
tuning of SILC servers for faster execution of user programs in the comprehen-
sive application style, and further case studies with other types of numerical
simulations such as computational fluid dynamics.

Acknowledgment. This research was supported by a grant-in-aid project [6]
in the Core Research for Evolutional Science and Technology (CREST) program
of Japan Science and Technology Agency.

References

1. Kajiyama, T., Nukada, A., Suda, R., Hasegawa, H., Nishida, A.: Distributed SILC:
An easy-to-use interface for MPI-based parallel matrix computation libraries. In:
Proc. Para ’06, LNCS, Springer, in press. (2006) http://ssi.is.s.u-tokyo.ac.jp/silc/.

2. Kajiyama, T., Nukada, A., Suda, R., Hasegawa, H., Nishida, A.: Numerical simu-
lations in the SILC matrix computation framework. In: Proc. ICCM 2007. (2007)

3. Baraff, D., Witkin, A.: Large steps in cloth simulation. In: Proc. ACM SIGGRAPH
’98. (1998) 43–54

4. Lang, S.: Calculus of Several Variables, Second Edition. Addison-Wesley (1979)
5. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear sys-

tems. Journal of Research of the National Bureau of Standards 49 (1952) 409–436
6. Nishida, A., Kotakemori, H., Kajiyama, T., Nukada, A.: Scalable software infra-

structure project. In: Proc. SC06, poster. (2006) http://ssi.is.s.u-tokyo.ac.jp/.
7. Barrett, R., et al.: Templates for the Solution of Linear Systems: Building Blocks

for Iterative Methods. SIAM (1994)
8. Ninf Project: http://ninf.apgrid.org/.
9. NetSolve: http://icl.cs.utk.edu/netsolve/.

10. Tanaka, Y., Takemiyia, H., Nakada, H., Sekiguchi, S.: Design and implementation
of flexible, robust and efficient Grid-enabled hybrid QM/MD simulation. Compu-
tational Methods in Science and Technology 12 (2006) 79–87

11. Choy, R., Edelman, A.: Parallel MATLAB: Doing it right. Proceedings of the
IEEE 93 (2005) 331–341

12. Kepner, J., Ahalt, S.: MatlabMPI. Journal of Parallel and Distributed Computing
64 (2004) 997–1005

13. Shah, V., Gilbert, J.R.: Sparse matrices in MATLAB*P: Design and implementa-
tion. In: Proc. HiPC 2004, LNCS 3296. (2004) 144–155

14. Interactive Supercomputing, Inc.: http://www.interactivesupercomputing.com/.

