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Abstract
We describe a perceptual space for timbre, define an objective
metric that takes into account perceptual orthogonality and mea-
sure the quality of timbre interpolation. We discuss two timbre
representations and measure perceptual judgments. We deter-
mine that a timbre space based on Mel-frequency cepstral coef-
ficients (MFCC) is a good model for perceptual timbre space.

1. Introduction
1.1. Goal and Motivation

Timbre is defined as ”that attribute of auditory sensation, in
terms of which a listener can judge that two sounds similarly
presented and having the same loudness and pitch are dissimi-
lar” [1]. By this definition, timbre is a component of all speech
sounds. Thus this paper considers a perceptual space that may
be useful in studying the role timbre plays in speech perception.
Our work has two goals. From a scientific viewpoint, we

want to understand how people perceive sound and speech. We
want to build a model of sound and speech perception that is as
fundamental as the three-color model for vision. From an engi-
neering viewpoint, we want to find a general representation for
speech that is a parsimonious description of perception because
it could lead to better speech recognizers.
This paper takes a three-step approach. First, we describe a

metric for the quality of a perceptual space, second we describe
a mathematical representation of a sound’s timbre, finally we
measure the match between representation and perception. The
sound representation that provides the simplest and most parsi-
monious description of timbre perception is the best model for
timbre space.

1.2. Speech Description

Formants frequencies are a common tool for describing speech.
Using the frequencies of the first few peaks in the spectrum we
can place vowel-like sounds in a low-dimensional diagram and
how these formant frequencies change over time. But it is not
clear if our brains perceive sounds in terms of formant frequen-
cies. Recent work [2] describes speech perception as a form of
spectral template matching. We want to know how to turn the
spectrum into a perceptual space.

1.3. Speech Distances

An early approaches to understand sound perception was un-
dertaken by Harvey Fletcher. This work [3] measured subject’s

ability
filterin
betwe
close
only a
descri
S

the ac
(MFC
Gauss
be use
precis
acous
nals. P
this do
of per
A

direct
was p
using
resent
jected
possib
impor
labele
ing so
this w
huma

1.4. P

Wew
indep
future
A

lowin
percep
betwe
plicity
orthog
be ab
straig
In

of tim
ficien
these
sentat
Speech
� �
, Jonathan Berger

�

usic and Acoustics
�

California, USA

Center
�

USA
a.stanford.edu

to correctly recognize nonsense words in the presence of
g and noise. Confusion matrices [4] suggest a distance
en speech sounds: sounds that are easily confusable are
together. However these approaches only apply to speech,
s part of a recognition task and lacks generalization to
be the underlying acoustic space of any sound.
peech recognition systems have great success modeling
oustic world using Mel-frequency cepstral coefficients
C) [5]. MFCC coefficients are statistically independent so
ian mixture models (GMM) with diagonal covariance can
d. But there has been no systematic, quantitative study of
ely how well MFCC representations of speech and other
tic signals match the perceptual representation of the sig-
erceptual studies served as the inspiration for MFCC, but
es not mean that the implementation is an accurate model
ception.
different approach tomeasuring timbre perception, which
ly measures the perceptual distance between two sounds,
roposed by Wessel [6], Grey [7] and others [8] [9]. By
multi-dimensional scaling (MDS) the sounds can be rep-
ed in a low-dimensional space in such a way that the pro-
locations fit the observed perceptual data as closely as
le. There are two shortcomings with this approach. Most
tantly, the axis produced by the MDS algorithm are not
d. Secondarily, while this approach is descriptive of exist-
unds, it does not help us interpolate between sounds. For
e need to find and describe a timbre space that matches
n perception.

rinciples of Timbre Space

ant a representation of sound, more general than formants,
endent of pitch and loudness, that may be fundamental to
speech-perception and -recognition research.
parsimonious description of timbre must have the fol-
g three properties. First, it must be consistent with
tion—it should accurately predict the perceptual distance
en two sounds. Second, it must be simple—we judge sim-
by requiring that the underlying representation’s axis are
onal. Third, it must describe a linear space—we want to
le to interpolate and describe in-between sounds using a
ht line.
this work, we tested two spectral-shape representations
bre: MFCC and a strawman we call linear frequency coef-
ts (LFC). In each case we synthesize diverse timbres from
representations, and measure the match between the repre-
ion coefficients and the perceptual judgements. We mea-
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Figure 1: An array of spectra generated for a 2-D range of LFC
coefficients. The column show � � ranging from 0 to 0.75, the
rows show � � ranging from 0 to 0.75. Compare the uniformity
of the frequency spacing of the peaks to those of Figure 2.

sure the parsimony of the representation by assuming a linear
model and fitting the data to a Euclidean model. The best de-
scription of timbre space fits a Euclidean model.

2. Representations of the sound

2.1. Parameterization

There are many audio representations with different degrees of
abstraction. While a spectrum forms a complete representation
of the sound, its arbitrary complexity makes a direct mapping
to human perception difficult.

MFCC is well known as a front-end for speech-recognition
systems. It uses a filterbank based on the human auditory sys-
tem: spacing filters in frequency based on the Mel-frequency
scale to reshape and resample the frequency axis. A loga-
rithm of each channel models loudness compression. Then a
low-dimensional representation is computed using the discrete-
cosine transform (DCT) [10]. The DCT not only removes
high-frequency ripples in the spectrum, but serves to decor-
relate the coefficients. However, this statistical property is
not the same as perceptual orthogonality. Generally, based on
speech-recognition engineering, a 13-D vector is used to de-
scribe speech sounds as a function of time.

LFC is a strawman representation we designed to be simi-
lar in representational power to MFCC. We start with a linear-
frequency scale and a linear amplitude scale. A 13-D DCT of
the normal amplitude spectrum reduces the dimensionality of
the spectral space and smooths the spectrum. Both MFCC and
LFC use a DCT to reduce the dimensionality and decorrelate
the coefficients; their difference lies in the initial stages of fre-
quency and amplitude warping.

In both representations, a static sound is described by a 13-
D vector that represents a smoothed version of the original spec-
trum. The coefficients are labeled from � � to � � 
 , where � �
represents the average power in the signal (constant in the ex-
periments in this paper), and higher-order coefficients represent
spectral shapes with more ripples in the auditory frequency do-
main. Next we describe how we convert these 13-D representa-
tions into their equivalent spectra, and then back into sound.
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2: An array of spectra generated for a 2-D range of
coefficients. The column show � � ranging from 0 to
the rows show � � ranging from 0 to 0.75.
esynthesis

s study, we choose a 13-D vector and then synthesize
s from these coefficients using the inverse transforms of
nd MFCC. In both representations much information is
r equivalently, many different sounds will lead to equiva-
oefficients. At each step in the transformation we choose
plest spectrum.
e reconstruct the smooth spectrum by inverting the LFC
FCC representations. For LFC, the reconstructed spec-�� 
 � �
is the IDCT of LFC vector � �� . For MFCC, we first

ute the IDCT of the MFCC vector �� � � � � � � 
 � � �
. Then

g ten to that power, � � � # % '( *
is the reconstructed filter-

output for channel + . We then assume that � � represents
lue at the center frequencies of each channel, and render
constructed spectrum �� 
 � �

by linearly interpolating val-
tween the center frequencies.

epresentation comparison

oint in LFC or MFCC space is a sound. Figures 2 and 1
an array of spectra in this space as we vary the � � and � �
onents of the vector, keeping all other coefficients but the
mponent equal to zero. With both � � and � � coefficients
zero, and � � � # , the spectrum is flat. As the value of � �
ses, going down the columns, there is a growing bump in
ectrum at DC and in the mid-frequencies. As the value of
creases, going across rows, three bumps increase in size.

3. Synthesis
dditive FM synthesis

oice-like stimuli used in this study are synthesized from
ectrum derived in Section 2.2 using a source-filter model
ech. The source is an impulse train with the desired pitch.
ltering was implemented using additive synthesis. The
tude of each harmonic component is scaled based on the
d spectral shape. The pitch, or fundamental frequency,
220 Hz, the frequency of the vibrato , � is 6 Hz, and the
tude of the modulation - is 6%. Using the reconstructed
al shape �� 
 � �

, with the harmonics number . , the synthe-
sound is

1 2 �� 
 . 4 � � � 4 5 7 9 
 : ; . � � = ? - 
 # A C E 5 : ; . , � = � �
(1)



3.2. Prepared Stimuli

As it is difficult to fully explore a 13-D space, we chose dis-
crete pairs of coefficients, and measured subject’s perceptual
judgements in these 2-D spaces. Two such spaces are shown
in Figures 2 and 1. Arbitrary pairs were studied to give insight
into how the representations behaved. The five pairs studied are
[ � � , � � ], [ � � , � � ], [ � � , � � ], [ � � , � � � ], and [ � � � , � � � ].
Two of the 13 coefficients are chosen as variables and set to

non-zero values. For example, in the 
 � � � � � � space, the param-
eter vector is 
 � � � � � � � 
 � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
The values of these parmeters are varied over the set � �
 � � � � � � � � � � � � � � � � � The vector is interpreted as LFC or MFCC
for resynthesis.

4. Experiment
We measured the distance for several sets of timbre parameters
by asking subjects for their subjective evaluation of the differ-
ence between two sounds in the prospective representation.
A stimulus consisted of two sounds, where the first is a ref-

erence sound and the second is a trial sound, with no pause
between the paired sounds. The reference sound was kept iden-
tical through the entire experiment. It has a flat spectrum, all
the 13 coefficients are zero except � � (i.e. 
 � � � � � � � 
 � � � � .)
The second element of each pair, the trial sound, was varied in
each presentation pair.
For each of the ten sets of sounds we played five examples

to help the subjects understand the types and range of sounds
that appear on the main experiment. In the main experiment, a
distance measurement is recorded after playing a subject a pair
of sounds. The subject was asked to rate the degree of similarity
between pair elements on a scale of one to ten, where one is
identical and ten is very different. The 16 stimuli in a set were
presented to the subjects in a random order.
Ten students with ages between 20 – 35 years old partici-

pated in the experiment. The stimuli were presented to the sub-
ject using a headset in a quiet office environment.

5. Analysis method
There are two steps in the analysis procedures. In the first step,
we fit the individual distance judgments to a simple Euclidean
model. We compute the residual from the model to evaluate
the performance of the representations (LFC and MFCC) on
each subject. In the second step, we computed the mean of the
residuals and its standard error for each of ten sets in order to
evaluate the representation.

5.1. Individual Euclidean model fitting

For a two-dimensional test as performed, the Euclidean model
predicts the perceptual distance, � , that subjects reported in the
experiment � � � � � �  " # � (2)

where � is one of the 13 coefficients (e.g. � � ) and # is an-
other coefficient (e.g. � � ). Note that this is a linear equation
in the known quantities � � , � � and # � . Multidimensional linear
regression is used in order to test the fit of perceptual data to
a Euclidean model. The estimation of the regression model is
done by the least squares method, using the left inverse (pseudo-
inverse) of the matrix, which guarantees the minimum-error lin-
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3� is the estimated distance by the linear regression model.
3 shows the measured perceptual distances for one sub-
d the estimated Euclidean model.

ntegrating the individual timbre space of the subjects

the model residuals for individual subjects, the mean of
siduals is calculated for each representation

4� $ & ( � �5 7+ 8 : � � $ & ( - 8 (4)

5
is the number of subjects. The standard error is calcu-

s follows:

; � < = 78 : � ? � $ & ( - 8 1 4� $ & ( ? �5 1 � (5)

; D & E � � ;F 5 (6)

mparing the standard error ; D & E �
of each representation,

cide which representation is a better model of human per-
n.

6. Results
4 compares the quality of the two perceptual spaces, LFC
MFCC, when tested with five different 2-D sets of pa-
ers. On average, either timbre space predicts the percep-
dgment with a mean error of 1 point on a 10-point scale.
cases, the MFCC representation forms a better model of
space than the simplified LFC representation. In other
, the MFCC representation allows for more accurate tim-
terpolation and creates a model where the parameter axis
thogonal.
or most pairs of dimensions within a representation, the
l error is relatively constant. This result suggests that these
of dimensions form an orthogonal perceptual model of
. This is true even for a range of dimensions as close
and � � and as wide as � � and � � � . But quite notably,
odel error jumps dramatically when we studied � � � and
imensions. Since � � and � � � proved to be a good model,
ted by interpolation and orthogonality, this suggests that
rceptual model is still linear for higher-order dimensions.
hen � � � and � � � are paired the model error goes up, sug-
g that these two dimensions are not as orthogonal as the
.
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We also evaluated the magnitude of each dimension’s ef-
fect on the resulting perceptual judgements. This is quantified
by the size of the 
 and � parameters in the fit to Equation 2. In
our initial study, these quantities are similar in size, for all tested
dimensions, suggesting that all 13 dimensions are equally im-
portant in the perceptual distance judgement.
The Euclidean models did an excellent job of predicting the

perceptual judgements. The variance of the residuals was 6.8
units � for the LFC model (on a 10-point scale) and 3.9 for the
MFCC model. In both cases, the models were able to account
for 66% of the variance of the original distance judgements.

7. Conclusions
In this paper we have articulated a set of criteria for evaluating
a timbre space, described two representations of timbre, mea-
sured subject’s perceptual distance judgments, and found that a
model for timbre based on the MFCC representation accounts
for 66% of the perceptual variance.
This result is interesting because we have shown an objec-

tive criteria that describes the quality of a timbre space, and
established that MFCC parameters are a good perceptual rep-
resentation for static sounds. Previous work has demonstrated
that MFCC (and other DCT-based models) produce representa-
tions that are statistically independent. This work suggests that
the auditory system is organized around these statistical inde-
pendences and that MFCC is a perceptually-orthogonal space.
The procedure described in this paper does not give a closed-
form solution to the timbre-space problem. All we can do is
test a representation and see if it is parsimonious with percep-
tual judgments. This paper is the first step towards a complete
model of timbre perception.
In the small sense, the results described here are not sur-

prising. MFCC has enjoyed well-deserved success as a means
of representing sounds in speech-recognition systems. But this
paper makes two contribution to our understanding of speech
perception. First, we have measured the connection between the
MFCC representation and perception—MFCC is a good model
of perceptual distance. Second, we have established a procedure
for testing new timbre and speech representations and compar-
ing their results to perception. With this test we hope to find
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better representations of audio signals to help us under-
speech perception and build better speech recognizers.
ost importantly, the timbre representations we tested here
atic; speech is not. Many timbre models find that onset
for example, is an important component of timbre percep-
ut the criteria (linearity and orthogonality) we described
re important as we add features to the timbre space.
inally, we have not begun to understand the contextual and
dual differences involved in timbre for speech perception
However, this work addresses the underlying representa-
issues.
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