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This paper presents a quantitative metric to describe the multidimensionality of spectral
envelope perception, that is, the perception specifically related to the spectral element of tim-
bre. Mel-cepstrum (Mel-frequency cepstral coefficients or MFCCs) is chosen as a hypothetical
metric for spectral envelope perception due to its desirable properties of linearity, orthogonality,
and multidimensionality. The experimental results confirmed the relevance of Mel-cepstrum
to the perceived timbre dissimilarity when the spectral envelopes of complex-tone synthetic
sounds were systematically controlled. The first experiment measured the perceived dissim-
ilarity when the stimuli were synthesized by varying only a single coefficient from MFCC.
Linear regression analysis proved that each of the 12 MFCCs has a linear correlation with
spectral envelope perception. The second experiment measured the perceived dissimilarity
when the stimuli were synthesized by varying two of the MFCCs. Multiple regression analysis
showed that the perceived dissimilarity can be explained in terms of the Euclidean distance of
the MFCC values of the synthetic sounds. The quantitative and perceptual relevance between
the MFCCs and spectral centroids is also discussed. These results suggest that MFCCs can
be a metric representation of spectral envelope perception, where each of its orthogonal basis
functions provides a linear match with human perception.

0 INTRODUCTION

The spectral envelope of a sound is a crucial aspect of
timbre perception. In this study, we propose a quantitative
model of spectral envelope perception, that is, the spectral
element in the timbre perception, with a set of orthogo-
nal basis functions. The goal of this work is to develop
a quantitative mapping between a physical description of
the spectral envelope and its perception, with the purpose
of controlling timbre in sonification in a meaningful and
reliable way. The model suggests a systematic description
of spectral envelope perception whose simplicity may be
seen as analogous to the three primary colors in the visual
system.

In the earliest studies of timbre perception, Helmholtz
speculated that the spectral envelope is the source of the
timbre variations [1]. For speech sounds, the formant struc-
ture of the overtone series was determined to be the key fac-
tor in differentiating vowels [2], [3]. For Western musical-
instrument sounds, timbre perception has often been de-
scribed in terms of the spectral centroid, spectral flux, and

attack time [4]–[7]. In addition to these factors, other factors
such as amplitude and frequency micromodulations and in-
harmonicity are also taken into account [8]. Although these
descriptive studies can address the relationship between
the physical aspects of sound and the perception, more in-
formation on the precise shape of the spectral envelope is
often needed to synthesize sounds in a controlled way. In
other words, although there are multiple layers (i.e., per-
ceptual, cognitive, physical, and social perspectives) in ad-
dressing sound quality [9], understanding at one layer does
not necessarily lead to the improvement at another layer.
Recent studies on morphed instrumental sounds employed
the time-varying multiband approach to evaluate the per-
ception of the synthesized timbre, connecting these multiple
layers [10]–[12].

A robust quantitative model for timbre perception has
been long desired for the control of timbre in sound syn-
thesis, especially in relation to the use of sound in audi-
tory displays of information. To take full advantage of the
multidimensionality of timbre in sonification, we need a
quantitative, multidimensional description for spectral
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envelope perception. Such a model allows reliable map-
pings of data to perceptual space, which is critical for ef-
fective sonification [13]. Many researchers have concep-
tualized spectral envelope perception by analogy with the
visual color system, by finding an orthogonal basis in the
spectral shapes of instrumental sounds [14], by propos-
ing the concept of sound color [15], and by visualizing
organ sounds as an energy-balance transition across three
frequency regions [16].

In this work, we aim for a simple, quantitative, and mul-
tidimensional model that can be extended to synthesize
perceptually meaningful variations of spectral envelopes.
Ideally, such a model will predict the spectral envelope
perception in a linear and orthogonal manner; each orthog-
onal basis should have a quantitative label that can linearly
represent the perceived difference, and the perception of a
complex spectral envelope could be explained in terms of
the superposition of these basis functions.

Seeking such a model for spectral envelope perception,
we chose the Mel-cepstrum (also known as Mel-frequency
cepstrum coefficients or MFCCs) for the following rea-
sons: (1) MFCCs are constructed by a set of orthogonal
basis functions, therefore satisfying the need for an orthog-
onal model; (2) MFCCs are based on perceptually relevant
scalings, which can provide a linear mapping between the
numeric description and the perception; and (3) MFCCs
have been a powerful front-end tool for many engineering
applications, and clarifying the perceptual characteristics
of MFCCs by performing psychoacoustic experiments is
valuable.

The Mel-cepstrum was originally proposed as “the de-
scription of short-term spectra ... in terms of the contribution
to the spectrum of each of an orthogonal set of spectrum-
shape functions” [17]. The Mel-cepstrum is computed by
applying a discrete cosine transform (DCT) to the output
of a simple auditory filterbank that roughly resembles crit-
ical bands. Unlike other representations of spectral enve-
lope, such as the 1/3-octave-band models or specific loud-
ness, the basis functions of a Mel-cepstrum are mathemat-
ically orthogonal. Mermelstein noted that a Mel-cepstrum
can constitute a distance metric that reflects the percep-
tual space of phonemes [18] and examined its efficiency
as a front end for automatic speech recognition [19]. Now
it is considered to be the classic front-end algorithm for
automatic speech recognition [20]. Its application has been
extended to timbre-related music information retrieval [21],
[22], sound database indexing based on timbre characteris-
tics [23], [24], timbre control for sonification [25], percep-
tual description of instrumental sound morphing [26], and
a proposal that timbre perception be represented in terms
of sound color and sound density [27].

Despite such numerous applications, the authors’ earlier
works were the first to examine the Mel-cepstrum’s percep-
tual characteristics with psychoacoustic experiment proce-
dures [28]–[30], and, before that, the perceptual relevance
of MFCCs was demonstrated only by applications. There-
fore, it is worthwhile to examining the perceptual charac-
teristics of MFCCs in detail using psychoacoustic experi-
ments. Still, Mel-cepstrum is not the most precise auditory

model. Other perceptual models, such as specific loudness
[31], the spatiotemporal receptive-field model [32], and
the Mellin transform [33] may seem to be better options.
However, these models do not consist of orthogonal basis
functions, and they are not necessarily a compact algorithm
that enables efficient analysis and synthesis of timbre. For
these reasons, MFCCs were considered the most suitable
for a spectral envelope perception model.

We employed the following framework to test this model.
We first synthesized a stimulus set with gradually changing
spectral envelopes by varying the Mel-cepstrum values in a
stepwise order, while keeping the temporal characteristics
constant across the stimuli. The participants listened to the
stimuli in pairs and provided dissimilarity ratings. Finally,
the relationship between the dissimilarity ratings and the
Euclidean distance of the MFCC values was analyzed with
a linear regression.

To measure spectral envelope perception, the temporal
characteristics of the stimuli must be strongly controlled
because the temporal structure has a strong effect on timbre
perception. To control this effect, we decided to use the
same temporal structure for all of the stimuli. Although it
might seem more interesting to employ various kinds of
temporal structures in a single experiment, it would not
allow us to observe the multidimensionality of spectral en-
velope perception accurately. In musical instrument timbre
studies, Plomp detected three dimensions for spectral en-
velope perception when he minimized the variation in the
temporal structure [14], whereas other researchers detected
only a single dimension (spectral centroid) dedicated solely
to the spectral envelope, in addition to another spectro-
temporal dimension (spectral flux) when they introduced
various temporal structures [4]–[7]. Therefore, we decided
to maintain a single kind of temporal structure for the entire
stimuli set.

In designing the temporal structure of the stimuli, we
wanted to create tones with a distinct quality that helped
the participants make reliable judgments. For this purpose,
the stimuli are desirably sustained and have the fewest ran-
dom factors. The simplest design that satisfies this crite-
rion is obviously the addition of sinusoids in a harmonic
series. But this design has an unwanted effect: when the
spectral envelope is manipulated, the amplified partials
are perceived as obtrusive and separated from the other
partials.

To avoid this perceptual segregation, we added a vibrato-
like frequency modulation to all the harmonics, so that all
of the partials contribute to a unified tone thanks to the
“common fate” effect [34]. With this vibrato, the synthe-
sized sounds exhibited a voice-like quality that is more
natural than sinusoid beeps. Because parameter-mapping
sonification can sound unpleasant [35], such naturalness
is valuable. As already shown in voice-based sonification
projects, voice-like qualities often facilitate the compre-
hension of data [36], [37]. However, stimuli with vibrato
may be unacceptable for the experiment because vibrato
might influence spectral envelope perception due to its dra-
matic musical effect, which is particular to Western operatic
singing. But, in fact, adding vibrato to a voice does not
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change the perceived vowel [38], and people can distin-
guish subtle changes in the spectral envelope of the tones
with vibrato [39]. This means that adding vibrato does not
interfere with the perception of the spectral envelope and
that, therefore, the use of vibrato for the experiment stim-
uli is acceptable. Furthermore, we expect that the inclusion
of vibrato implies a musical setting and encourages the
participants to engage in “musical listening” with greater
attention to timbre.

Using these stimuli, we conducted two experiments in
the experimental framework described above: the first was
designed to test the perceptual effect when modifying a
single dimension from MFCC, and the second to test the
orthogonality of the timbre space using two dimensions
from MFCC. We used linear regression to analyze our data
because we were explicitly investigating the relationship
between MFCC and subjective ratings, rather than explor-
ing unknown dimensions that could be discovered with the
multidimensional scaling (MDS) method.

This paper aims to show (1) that there is a linear re-
lationship between each of the Mel-cepstrum orthogonal
functions and the perceived timbre dissimilarity, (2) that the
multidimensionality of complex spectral envelope percep-
tion can be explained in terms of the Euclidean distance of
the orthogonal function coefficients, and (3) that the widely
used Mel-cepstrum can form a valid representation of spec-
tral envelope perception. However, the multidimensionality
of spectral envelope perception beyond two dimensions and
the temporal aspect of timbre perception remain outside the
scope of this study.

In the following sections, we describe the method we
used to synthesize the stimuli while varying the MFCC
values in a controlled way. We describe our two experiments
on spectral envelope perception and their result followed by
a discussion and our conclusion.

1 MFCC-BASED SOUND SYNTHESIS

1.1 Mel-Cepstrum
The MFCC is the DCT of a modified spectrum, in which

its frequency and amplitude are scaled logarithmically. Of
the various implementations that exist, the Mel-cepstrum
algorithm from Auditory Toolbox [40] was employed. The
spectrum is first processed with a filterbank of 32 chan-
nels, which roughly approximate the spacing and band-
width of the auditory system’s critical bands. The frequency
response of the filterbank Hi(f) is shown in Fig. 1, and the
passband of each triangular window Hi(f) is shown in Eq.
(1). The amplitude of each filter is normalized so that each
channel has unit power gain.

Bandwidth (Hi ) =
⎧⎨
⎩

200.0 (i = 1)
133.3 (1 < i ≤ 13).
1000 · 1.072i−13 (i > 13)

(1)

The filterbank, whose triangular frequency response is
shown in Fig. 1, is applied to the sound in the frequency
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Fig. 1. Frequency response of the filterbank used for the MFCC.
The sound spectrum is first processed with this filterbank, which
roughly approximates the characteristics of auditory critical
bands. Taking the lower coefficients from the DCT of this fil-
terbank output yields MFCC.

domain, and provides the filterbank output, Fi:

Fi =
∫ fi ·high

f = fi ·low

Hi ( f ) · S( f ) df, (2)

where i is the channel number in the filterbank, f is the
frequency, Hi(f) is the filter response of the ith channel, and
S(f) is the absolute value of the discrete Fourier transform
of a signal. fi·low and fi·high denote the lowest and highest fre-
quency bins, respectively, of the passband of the ith channel
filter.

The MFCCs, Ci, are computed by taking the DCT of the
log-scaled filterbank output:

Li = log10(Fi ), (3)

Cn = wn

I∑
i=1

Li · cos
π(2i − 1) · (n − 1)

2I
, (4)

where w0 = 1/
√

I , wn = √
2/I for 1 ≤ n ≤ N − 1. I and N

represent the total number of filters and the total number of
Mel-cepstrum coefficients, respectively. Taking 13 lower
coefficients from Cn, the set of coefficients from C0 to
C12 is called the MFCC which summarizes the spectral
envelope.

1.2 Sound Synthesis
The sound synthesis for the stimuli has two stages: (1)

the spectral envelope is created by the pseudo-inverse trans-
form of the Mel-cepstrum, and (2) an additive synthesis of
sinusoids is performed using the spectral envelope gener-
ated earlier.

1.2.1 Pseudo-Inversion of MFCC
As described above, the MFCC takes only the 13 lower

coefficients, and therefore it is a lossy transform from a
spectrum. The inversion of the MFCC is not possible in
a strict sense. This section describes the pseudo-inversion
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of the MFCC, which generates a smooth spectral envelope
from a given Mel-cepstrum.

The generation of the spectral envelope starts with a
given array of Mel-cepstrum coefficients Cn, which is an
array of 13 coefficients. The reconstruction of the spectral
shape from the MFCC starts with the inverse discrete cosine
transform (IDCT) and amplitude scaling:

L̃ i =
N∑

n=1

wn · Cn · cos
π(2i − 1) · (n − 1)

2I
, (5)

F̃i = 10L̃ i . (6)

In this pseudo-inversion, the reconstructed filterbank out-
put F̃i is considered to represent the value of the recon-
structed spectral envelope S̃( f ) at the center frequency of
each channel from the filter bank,

S̃( fi ) = F̃i , (7)

where fi is the center frequency of the ith auditory filter.
Therefore, to obtain a reconstruction of the entire spec-
trum, S̃( f ), a linear interpolation was applied to the values
between the center frequencies S̃( fi ).

1.2.2 Additive Synthesis
The voice-like stimuli used in this study are synthesized

using additive sinusoidal synthesis. The reconstructed spec-
tral envelope S̃( f ) determines the amplitude of each sinu-
soid. A slight amount of vibrato is added to give some
coherence and life to the resulting sound.

In the synthesis, a harmonic series is prepared, and the
level of each harmonic is weighted based on the desired
smooth spectral shape. The pitch, or fundamental frequency
f0, is set at 200 Hz, with the frequency of the vibrato v0 set
at 4 Hz and the sampling rate at 8 kHz.

Using the reconstructed spectral shape S̃( f ), the additive
synthesis of the sound is accomplished as follows:

s(t) =
Q∑

q=1

S̃( finst(q, t)) · sin(2πq f0t + 1 − q cos 2πv0t),

(8)

where q specifies the qth harmonic of the harmonic se-
ries. The total number of harmonics Q is 19, and all the
harmonics stay under the Nyquist frequency of 4 kHz. The
amplitude of each harmonic is determined by using a lookup
table of S̃( f ) and the instantaneous frequency finst, which
is defined as follows:

finst(q, t) = q f0 + qv0 · sin 2πv0t. (9)

The fundamental frequency f0 = 200 (Hz) is determined
from the range of 180–230 Hz (the fundamental frequency
of the female voice), so that the MFCC of the resulting
sound maintains the intended stepwise or grid structure the
best.

The duration of the resulting sound s is 0.75 s. For the first
30 ms of the sound, its amplitude is linearly fading in, and
for the last 30 ms, its amplitude is linearly fading out. All
the stimuli are scaled with an identical scaling coefficient.

The specific loudness [31] of all the stimuli showed a very
small variance, and their loudness was considered to be
fairly similar within the stimuli set. For all of the 144 stimuli
synthesized for this study, 123 stimuli scored under 3%, 10
stimuli scored 3–6%, and 7 stimuli scored 6–8% loudness
deviations when compared with the mean loudness of all
the stimuli.

2 EXPERIMENT 1: SPECTRAL ENVELOPE
PERCEPTION OF SINGLE-DIMENSIONAL MFCC
FUNCTION

2.1 Scope
This experiment considers the linear relationship be-

tween spectral envelope perception and each coefficient
from the Mel-cepstrum, namely, a single function from the
orthogonal set of spectral envelope functions. Following the
sound-synthesis method described in the previous section,
when a coefficient from Mel-cepstrum changes gradually
in a linear manner while the other coefficients are kept con-
stant, the spectral envelope of the resulting sound holds a
similar overall shape, but the humps of the envelope change
their amplitudes exponentially. In the experiment, it was ex-
amined whether the Mel-cepstrum can linearly represent the
spectral envelope perception, and all 12 coefficients from
Mel-cepstrum were tested based on this framework. The
experiment was granted the approval for human-subject
research by the Stanford University Institutional Review
Board.

2.2 Method
2.2.1 Participants

Twenty-five participants (graduate students and staff
members from the Center for Computer Research in Mu-
sic and Acoustics at Stanford University) volunteered for
the experiment. The participants were aged 20–35 years
old, and had a musical background (majoring or minoring
in music in college and graduate school), and/or an audio
engineering background (enrolled in a music technology
degree program). They all described themselves as having
normal hearing. We conducted a pilot study with Japanese
engineering students, and confirmed that the experimen-
tal results did not depend significantly on the participant
group.

2.2.2 Stimuli
Twelve sets of synthesized sounds were prepared. The set

n is associated with the MFCC coefficient Cn, the stimuli set
1 consists of the stimuli with C1 varied, and the stimuli set 2
consists of the stimuli with C2 varied, and so on. Although
Cn is increased from zero to one with five levels, namely,
Cn = 0, 0.25, 0.5, 0.75, 1.0, to form a stepwise structure,
the other coefficients are kept constant, that is, C0 = 1 and
all the other coefficients are set at zero.
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Fig. 2. Spectral envelopes generated by varying a single Mel-
cepstrum coefficient. The first row shows the spectral envelopes
when C1 from MFCC was varied from 0 to 1 with five steps
(0, 0.25, 0.5, 0.75, and 1.0). The second, third, and fourth rows
correspond, respectively, to cases where C2, C3, and C6 from
MFCC were varied in the same manner.

For example, stimuli set 4 consists of five stimuli based
on the following parameter arrangement:

C = [1, 0, 0, 0, C4, 0, ..., 0], (10)

where C4 is varied with five levels:

C4 = [0, 0.25, 0.5, 0.75, 1.0]. (11)

Fig. 2 illustrates the idea of varying a single coefficient
of MFCC, and the resulting set of the spectral envelopes
for the cases of varying C1,C2, C3, and C6.

2.2.3 Procedure
The experiment had 12 sections, one for each of the 12

sets of stimuli. Each section consisted of a practice phase
and an experimental phase.

The task of the participants was to listen to a pair of stim-
uli that were played in sequence with a short intervening
silence, and to rate the perceived timbre dissimilarity of the
presented pair. They rated the perceived dissimilarity on a
scale of 0 to 10, with 0 indicating that the presented pair of
sounds were identical, and 10 indicating that they were the
most different within the section.

The participants pressed the “Play” button of the exper-
iment GUI to play a sound, and reported the dissimilarity
rating using a slider on the GUI. To facilitate the judgment,
the pair with the largest spectral envelope difference in the
section (i.e., the pair of stimuli with the lowest and highest,
Cn = 0 and Cn = 1, is assumed to have a perceived dissim-
ilarity of 10) was presented as a reference pair throughout
the practice and experimental phases. Participants were al-
lowed to listen to the test pair and the reference pair as
many times as they wanted, but were advised not to repeat

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 All
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Fig. 3. Coefficients of determination (R2) from the linear regres-
sion analysis of Experiment 1 with 95 % confidence intervals for
each of the 12 Mel-cepstrum coefficients, Cn, and for the average
of all the coefficients.

this too many times before making their final decision on
scaling and proceeding to the next pair.

In the practice phase, five sample pairs were presented
for rating. In the experimental phase, 25 pairs per section
(all the possible pairs from five stimuli) were presented in
a random order. The order of presenting the sections was
also randomized. The participants were allowed to take a
break as they wished.

2.3 Linear Regression Analysis
The dissimilarity judgments were analyzed using sim-

ple linear regression [41], with absolute Cn differences as
the independent variable, and their reported perceived dis-
similarities as the dependent variable. The coefficient of
determination R2 represents the goodness of fit in the lin-
ear regression analysis. The linear regression analysis was
individually applied for each section and each participant,
because it is anticipated that every listener could respond
differently to the stimuli sets, which would result in the
deviation of the regression coefficients. With a quantile–
quantile plot, the R2 values formed a straight line except
for a very few outliers with low R2 values, showing that the
distribution of the R2 values is close to normal.

After the linear regression, the R2 values for one section
from all the participants were averaged to find the mean
degree of fit (mean R2) of each section. The mean R2 among
the participants was used to judge the linear relationship
between the Cn distance and the perceived dissimilarity.

The mean R2 and the corresponding confidence interval
are plotted in Fig. 3. The mean R2 for all the responses was
85%, with the confidence intervals for all the sections over-
lapped. This means that all of the coefficients, from C1 to
C12, have a linear correlation with the perception of sound
color with a statistically equivalent degree of fit, when an
experiment is performed on an individual coefficient inde-
pendent of other coefficients.
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3 EXPERIMENT 2: SPECTRAL ENVELOPE
PERCEPTION OF TWO-DIMENSIONAL MFCC
SUBSPACE

3.1 Scope
This experiment tested the spectral envelope perception

of the two-dimensional MFCC subspace. The stimuli set
was synthesized by varying two coefficients from the Mel-
cepstrum, say Cn and Cm, to form a two-dimensional sub-
space. The subjective response to the stimuli set was tested
based on the Euclidean space hypothesis, namely, that each
coefficient functions as an orthogonal basis when estimat-
ing the spectral envelope perception. As it is not realis-
tic to test all of the 144 two-dimensional subspaces, five
two-dimensional subspaces were chosen for testing. The
experiment was approved for human subject research by
the Stanford University Institutional Review Board.

3.2 Method
3.2.1 Participants

Nineteen participants, who were audio engineers, ad-
ministrative staff members, visiting composers, and artists
from the Banff Centre, Alberta, Canada, volunteered for
this experiment. The participants were aged 25–40 years
old, and they had a strong interest in music, with many of
them having received professional training in music and/or
audio engineering. All of them described themselves as
normal-hearing.

3.2.2 Stimuli
Five sets of synthesized sounds were prepared that were

associated with the five different kinds of two-dimensional
subspaces. The five subspaces were made by varying [C1,
C3], [C3, C4], [C3, C6], [C3, C12], and [C11, C12], respec-
tively. For each set, the coefficients in question were inde-
pendently varied over four levels (Cn = 0, 0.25, 0.5, 0.75,
and Cm = 0, 0.25, 0.5, 0.75) to form a grid-like structure;
the other coefficients were kept constant, that is, C0 = 1
and all other coefficients were set at zero. By varying two
coefficients independently, over four levels, each set had 16
synthesized sounds.

For example, the first set made of the subspace [C1, C3]
consists of the 16 sounds based on the following parameter
arrangement:

C = [1, C1, 0, C3, 0, ..., 0], (12)

where C1 and C3 were varied over four levels, creating a
grid with two variables.

The subspaces were chosen with the intention of testing
the spaces made of: nonadjacent low to middle coefficients
([C1, C3] and [C3, C6]); two adjacent low coefficients ([C3,
C4]); low and high coefficients ([C3, C12]); and two adjacent
high coefficients ([C11, C12]).

Fig. 4 shows an example of the generated spectral
envelopes for this experiment.
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Fig. 4. Spectral envelopes generated by varying two Mel-cepstrum
coefficients. The horizontal direction (left to right) corresponds to
incrementing C6 from 0 to 0.75 in four steps (0, 0.25, 0.5, and
0.75), and the vertical direction (top to bottom) corresponds to
incrementing C3 from 0 to 0.75 in four steps. For example, the
top-left subplot shows the spectral envelope when C6 = C3 = 0,
and the bottom-right subplot is when C6 = C3 = 0.75.

3.2.3 Procedure
There are 16 stimuli sounds per one subspace, making

256 possible stimulus pairs. Because testing all the pairs
would take too much time and exhaust the participants, it
was necessary to reduce the number of the stimulus pairs
in the experiment. The strategies for reducing the test pairs
were (1) test either AB or BA ordering when measuring the
perceived difference of stimuli A and B, instead of mea-
suring the perception for both AB and BA; and (2) test
only some interesting pairs instead of testing all the pos-
sible combinations of stimulus pairs. We adopted the first
strategy, and the actual order for a stimulus pair in the ex-
periment was randomly selected from AB and BA ordering.
However, the selection of ordering for each stimulus pair
was not varied across the participants.

To employ the first strategy, it was necessary to evaluate
whether the ordering of the stimuli had a significant effect
on the perceived dissimilarity of the spectral envelope. To
compare the AB responses and BA responses, equivalence
testing was conducted based on confidence intervals [42].
First, regression analyses with AB order and BA order were
separately conducted for each section and each participant.
Then the difference between the R2 values of AB and BA
order regressions for each section was calculated. After that,
for each section, the mean and the confidence intervals for
the R2 differences were calculated across participants. The
confidence intervals of the differences for each section were
2–3.5%, falling into the predefined 5% minimum difference
range. This reveals that the regression analyses based on AB
responses and BA responses were statistically equivalent.
Because of this equivalency, it was decided that presenting
only one of two possible directions of a stimulus pair was
sufficient.
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Fig. 5. Selection of the test pairs for the two-dimensional MFCC
subspace experiment. Left: 16 pairs to examine distances from the
origin. Middle: 5 pairs to examine large distances. Right: 13 pairs
to examine some shorter parallel and symmetric distances.

Even after halving the number of stimulus pairs, there
were still too many and further reduction was needed.
Therefore, some pairs were chosen to represent large and
small distances with some geometric order in the parameter
subspace. Within each subspace, the test pairs were selected
with the following interests, resulting in the total of 34 test
pairs per section:

• From the zero of the space Cn = Cm = 0 to all the
nodal points of the grid on the parameter subspace
(16 pairs);

• Other large distances (5 pairs);
• Some shorter parallel and symmetric distances to

test if they have similar perceived dissimilarities (13
pairs).

The final configuration of the test pairs is presented in
Fig. 5 .

The participants’ task was to listen to the paired stimuli,
which were played in sequence with a short intervening
silence, and to rate the perceived timbre dissimilarity of the
presented pair using a 0 to 10 scale. Here 0 indicates that
the paired stimuli were identical, and 10 indicates that the
perceived dissimilarity between the paired stimuli was the
largest in the section.

The participants reported the dissimilarity rating using a
slider on the experiment’s GUI. To facilitate the judgment,
the pair with the greatest spectral envelope difference in
the section is presented as a reference pair throughout the
practice and experimental phases, assuming that the pair of
stimuli with the lowest and highest, Cn = Cm = 0 and Cn =
Cm = 0.75, would have a perceived dissimilarity of 10
within the stimuli set. Participants were allowed to listen
to the test pair and the reference pair as many times as
they wanted, but they were advised not to repeat this too
many times before making their final decision on scaling
and proceeding to the next pair.

In the practice phase, five sample pairs were presented
for rating. In the experimental phase, 34 pairs per section
were presented in a random order. The order of presenting
the sections was also randomized. The participants were
allowed to take breaks as they wished.
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Fig. 6. Coefficient of determination (R2) from the regression anal-
ysis of the two-dimensional sound color experiment with 95%
confidence interval. Sections 1–5 represent the tests on subspaces
[C1, C3], [C3, C4], [C3, C6], [C3, C12], and [C11, C12], respectively.

3.3 Linear Regression Analysis
The dissimilarity judgments were analyzed using linear

regression. The orthogonality of the two-dimensional sub-
spaces was tested with a Euclidean distance-based model:
the independent variable is the Euclidean distance of the
MFCC between the paired stimuli, and the dependent vari-
able is the subjective dissimilarity rating:

d2 = ax2 + by2, (13)

where d is the perceptual distance that subjects reported in
the experiment, x and y are the respective differences be-
tween the Cn and Cm values of the paired stimuli. This model
reflects the idea that the perceptual distance should be de-
scribed in terms of the Euclidean distance of the spectral-
envelope description vectors. The standard least-squares
estimation is used with the linear regression analysis. The
coefficient of determination, R2, represents the goodness of
fit in the linear regression analysis.

Individual linear regression for each section and each
participant was applied first, and the R2 values of one sec-
tion from all the participants were then averaged to find the
mean degree of fit (mean R2) of each section. The mean
R2 among the participants is used to determine whether the
perceived dissimilarity reflects the Euclidean space model.

The mean R2 and the corresponding 95% confidence
interval are plotted in Fig. 6. The mean R2 of all the re-
sponses was 74% with the confidence intervals for all the
sections overlapping. This means that all of the five sub-
spaces demonstrate a similar degree of fit to a Euclidean
model of two-dimensional sound color perception regard-
less of the various choices of coordinates from the MFCC
space.

Fig. 7 shows the regression coefficients [i.e., a and b from
Eq. (13)] for each of the two variables from the regression
analysis for all five sections. The mean regression coeffi-
cients were consistently higher for the lower one of the two
MFCC variables, which means that lower Mel-cepstrum
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Fig. 7. Regression coefficients from regression analysis of the
two-dimensional sound color experiment. The first two points on
the left represent the regression coefficients for each dimension
of the [C1, C3] subspace, followed by the regression coefficients
for the subspaces of [C3, C4], [C3, C6], [C3, C12], and [C11, C12].

coefficients are perceptually more significant. Although the
confidence intervals overlap for the lower-order MFCCs,
and not for the higher-order MFCCs, this trend as regards
the mean regression coefficients is consistent across all the
MFCC subspace arrangements. This can be interpreted as
indicating that the degree of contribution of the MFCCs
is similar in the low- to mid-order MFCCs with a slightly
decreasing trend, and for higher-order MFCCs, the degree
of contribution drops more quickly and significantly.

4 DISCUSSION

4.1 Representing the Spectral Envelope
Perception with MFCC

This section integrates the two experiments and discusses
whether an MFCC can be a fair representation for spectral
envelope perception. To summarize Experiment 1, it was
shown that every orthogonal basis from the MFCC is lin-
early correlated to spectral envelope perception with an
average degree of fit of 85%. This holds true for every sin-
gle coefficient from the 12 dimensions in the MFCC vector,
meaning that each of the coefficients is directly associated
with spectral envelope perception. Experiment 2 tested the
association between spectral envelope perception and two-
dimensional MFCC subspace. The Euclidean distance in
the MFCC explains the spectral envelope perception with
an average degree of fit of 74%. Five different arrangements
of two-dimensional subspaces were selected, and all the ar-
rangements showed a similar degree of fit to the Euclidean
distance model. An examination of the regression coeffi-
cients demonstrated that lower MFCC coefficients had a
stronger effect in the perceived sound color space. These
findings suggest that the MFCC can satisfy the desired
characteristics of the spectral envelope perception model
described in “Introduction”.

The limitation of this experiment is that it only measured
the responses to single-dimensional and two-dimensional
MFCC subspaces. However, for further dimensionality,
Beauchamp reported that the full dimensional MFCC can
represent the timbre perception of musical instrument
sounds with a comparable precision to the Mel-band or
harmonics-based representations [43]. Other successful ap-
plications such as automatic speech recognition [20] or mu-
sic information retrieval [21] suggest that the MFCC can ef-
ficiently retrieve timbre-related information such as vowels,
consonants, and types of musical instruments. The recent
work by Alluri and Toviainen reports that the polyphonic
timbre of excerpts from musical works may not be necessar-
ily well described using an MFCC[44]. However, because
the scope of this experiment was the perception of musi-
cally organized mixtures of complex instrumental sounds,
this finding does not deny the capability of the MFCC to
represent the spectral envelope perception.

Previous works and applications have demonstrated that
the MFCC is a useful description for timbre-related infor-
mation, but did not show how each of the MFCC compo-
nents contributes to the overall performance of the whole
MFCC system. The experiments in this study showed that
each of the coefficients linearly correlates to the spectral
envelope perception and that there is a linear mapping be-
tween the perceived dissimilarity of the spectral envelope
and the Euclidean distance in a two-dimensional MFCC
subspace. These findings, along with Beauchamp’s full-
dimensional MFCC study, suggest that the MFCC can be
a fair representation of spectral envelope perception, and
that spectral envelope perception can be fully described in
terms of the Euclidean space constituted by MFCCs.

4.2 Associating the Spectral Centroid and an
MFCC

This section discusses the relationship between an MFCC
and the spectral centroid in representing the spectral enve-
lope perception. A spectral centroid has a clear, strong cor-
relation with the perceived brightness of sound [45], which
is an important factor in timbre perception [6].

First, to compare the spectral centroid with the MFCC,
the linear regression analysis of Experiment 1 was con-
ducted using the spectral centroid of stimuli as an indepen-
dent variable. The results were almost identical and statis-
tically equivalent to Fig. 3. To investigate this effect, the
spectral centroid for each of the stimuli used in Experiment
1 was calculated, which is shown in Fig. 8. This illustrates
that when a single dimension of the MFCC is manipu-
lated, the resulting stimuli have a linear increase/decrease
in the spectral centroid. The C1 stimuli had lower cen-
troids while C1 was increasing from 0 to 1, and the C2

stimuli had higher centroids while C2 was increasing, but
with a smaller coefficient (less slope), and so on. In sum-
mary, lower MFCC coefficients have a stronger correlation
to the spectral centroid, and the correlation is negative for
odd-numbered MFCC dimensions (the spectral centroid de-
creases while Cn increases, where n is an odd number), and
positive for even-numbered MFCC dimensions (the spectral
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Fig. 8. Spectral centroid of the stimuli used for Experiment 1,
when a single coefficient from the Mel-cepstrum was varied from
0 to 1 in five steps.

centroid increases while Cn increases, where n is an even
number).

This is not a coincidence based on the trend in spectral
envelopes generated for this experiment as shown in Fig. 2.
The spectral envelopes generated by varying C1 have a
hump around the low-frequency range, which corresponds
to the cosine wave at ω = 0, and a dip around the Nyquist
frequency, which corresponds to ω = π/2. As C1 increases,
the magnitude of the hump becomes higher.

The concentrated energy around the low-frequency re-
gion corresponds to the fact that the spectral centroids are
lower while the value of C1 increases. Now, if the spectral
envelopes are generated by varying C2, there are two humps
at the lowest frequency and the Nyquist frequency that cor-
respond to ω = 0 and ω = π. Another hump at the Nyquist
frequency makes the spectral centroid higher, whereas in-
creasing the value of C2 increases the spectral centroid.
The same trends are conserved for odd- and even-numbered
MFCC coefficients. With higher orders of MFCC, the basis
function has its humps more sparsely distributed over the
spectrum, which results in a weaker correlation between
the MFCC and the spectral centroid (i.e., the slope of the
line in Fig. 8 becomes more shallow as n increases).

Furthermore, the results from Experiment 2 show that
the lower-order Mel-cepstrum coefficient is perceptually
more important. As shown in Fig. 9, the linear relation-
ship between the MFCC and spectral centroid is consistent
in the stimuli set for Experiment 2. The low coefficient’s
strong association with the spectral centroid can explain
this effect. Because of the correlation between the spectral
centroid and MFCC in the stimuli for Experiment 2, the
result of the regression analysis based on the spectral cen-
troid was very similar to Fig. 6, except for Section 1. For
Section 1, the R2 of the spectral-centroid-based regression
was 84%, scoring it 13% above the R2 of the MFCC-based
regression, without overlapping confidence intervals. This
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Fig. 9. Spectral centroid of the stimuli used for Experiment 2,
Section 2, when two coefficients from the Mel-cepstrum, C3 and
C4, were varied from 0 to 0.75 in four steps.

could be explained in terms of the coefficient choice of
C1 and C3, which have a strong correlation with the spec-
tral centroid in the same direction, and therefore are easily
confused. For Sections 2–5, the R2 of the MFCC-based re-
gression was consistently higher by 2–5% than the R2 of
spectral-centroid-based regression, with overlapping confi-
dence intervals.

The above-mentioned characteristics can be dependent
on the specific MFCC implementation, and the pseudo-
inversion of the MFCC used in this experiment. Depending
on how the MFCC and its inversion are implemented, it
could have different kinds of relationships to the spectral
centroid. The relevance between the MFCC and spectral
centroid present in this experiment may be generalized
with further mathematical rationalization. If it is mathe-
matically promised that higher Mel-cepstrum coefficients
have a weaker correlation with the spectral centroid result-
ing in the reduced perceptual significance, it may explain
the efficiency of the common practice, which uses only
12 or 13 lower coefficients from the MFCC for automatic
speech recognition or music information retrieval.

However, there was a trend in the spectral centroids in
the MFCC-based stimuli set for both experiments, and our
results do not conflict with the previously reported char-
acteristics of the spectral centroid in relation to the tim-
bre perception. Both Experiments 1 and 2 suggest that an
MFCC-based description holds a similar degree of linearity
in predicting spectral envelope perception to a spectral-
centroid-based description. Yet the spectral centroid is
essentially a single-dimensional descriptor and does not
describe the complex shapes of the spectral envelope it-
self. Two sounds with different spectral envelopes could
have the same spectral-centroid value, but be represented
with different Mel-cepstrum values. The multidimensional
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Mel-cepstrum delivers more information about the spectral
envelope than the spectral centroid.

5 CONCLUSION

On the basis of desirable properties for modeling
spectral envelope perception (linearity, orthogonality, and
multidimensionality), Mel-frequency cepstral coefficients
(MFCCs) were chosen as a hypothetical metric for mod-
eling spectral envelope perception. Quantitative data from
two experiments illustrate the linear relationship between
the subjective perception of vowel-like synthetic sounds
and the MFCC.

The first experiment tested the linear mapping between
spectral envelope perception and all 12 Mel-cepstrum coef-
ficients. Each Mel-cepstrum coefficient showed a linear
relationship to the subjective judgment at a statistically
equivalent level to any other coefficient. On average, the
MFCC explains 85% of spectral envelope perception when
a single coefficient from the MFCC is varied in an isolated
manner from all the other coefficients.

In the second experiment, two Mel-cepstrum coefficients
were simultaneously varied to form a stimulus set in a two-
dimensional MFCC subspace, and the relevant spectral en-
velope perception was tested. A total of five subspaces were
tested, and all five exhibited a linear relationship between
the perceived dissimilarity and the Euclidean distance of
the MFCC at a statistically equivalent level. A subjective
dissimilarity rating showed an average correlation of 74%
with the Euclidean distance between the Mel-cepstrum
coefficients of the tested stimulus pair. In addition, the
observation of regression coefficients demonstrated that
lower-order Mel-cepstrum coefficients influence spectral
envelope perception more strongly.

The use of MFCCs to describe spectral envelope per-
ception was further discussed. Such a representation can
be useful not only in analyzing audio signals, but also in
controlling the timbre in synthesized sounds. The corre-
lation between the MFCC and the spectral centroid was
also discussed, although such a correlation can be specific
to our experimental conditions, and further mathematical
investigation is needed.

These experiments examined the MFCC model at low
dimensionality. Much work remains to be done in under-
standing how MFCC variation across the entire 12 dimen-
sions might relate to human sound perception. An interest-
ing approach is currently being employed by Horner and
coworkers, who are taking their previous experimental data
on timbre morphing of instrumental sounds [10, 11] and re-
analyzing it using MFCC [26], [43]. Their approach using
instrumental sounds will provide a good complement to the
approach taken here.
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