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ABSTRACT

We describe a perceptual space for timbre, define an objective
metric that takes into account perceptual orthogonality and mea-
sure the quality of timbre interpolation. We discuss three timbre
representations and measure perceptual judgments. We determine
that a timbre space based on Mel-frequency cepstral coefficients
(MFCC) is a good model for a perceptual timbre space.

1. INTRODUCTION

Timbre is defined as “that attribute of auditory sensation, in terms
of which a listener can judge that two sounds similarly presented
and having the same loudness and pitch are dissimilar” [1]. This
paper considers a perceptual space that may be useful in studying
the role timbre plays in sound perception. We compare and con-
strast three different representations for timbre and compare their
relevance to perception

Our work has two goals. From a scientific viewpoint, we want
to understand how people perceive sound and speech. We want
to build a model of sound perception that is as fundamental as
the three-color model for vision. From an engineering viewpoint,
we want to find a general representation for sound that is a parsi-
monious description of perception because it could lead to better
sound analyzers.

This paper takes a different approach to timbre perception than
previous work. The timbre work based on multidimensional scal-
ing [2, 3, 4] start with sounds, measure perceptual distances, and
then tries to synthesize a representation or coordinate system which
explains the MDS axis. In this work, we start with a coordinate
system, synthesize sounds based on this representation, and then
measures how well each representation fits our criteria for the op-
timum perceptual space.

This paper takes a three-step approach. First, we describe a
metric for the quality of a perceptual space, second we describe
mathematical representations of a sound’s timbre, finally we mea-
sure the match between representation and perception. The sound
representation that provides the simplest and most parsimonious
description of timbre perception is the best model for timbre space.

2. REPRESENTATIONS OF THE TIMBRE

2.1. Parameterization

There are many audio representations with different degrees of ab-
straction. While a spectrum forms a complete representation of the
sound, its arbitrary complexity makes a direct mapping to human
perception difficult.

MFCC is well known as a front-end for speech-recognition
systems. It uses a filterbank based on the human auditory system:
spacing filters in frequency based on the Mel-frequency scale to re-
shape and resample the frequency axis. A logarithm of each chan-
nel models loudness compression. Then a low-dimensional repre-
sentation is computed using the discrete-cosine transform (DCT)
[5]. The DCT not only removes high-frequency ripples in the spec-
trum, but serves to decorrelate the coefficients. However, this sta-
tistical property is not the same as perceptual orthogonality. Gen-
erally, based on speech-recognition engineering, a 13-D vector is
used to describe speech sounds as a function of time.

LFC is a strawman representation we designed to be similar in
representational power to MFCC. We start with a linear-frequency
scale and a linear amplitude scale. A 13-D DCT of the normal am-
plitude spectrum reduces the dimensionality of the spectral space
and smooths the spectrum. Both MFCC and LFC use a DCT to
reduce the dimensionality and decorrelate the coefficients; their
difference lies in the frequency and amplitude warping.

In both representations, a static sound is described by a 13-D
vector that represents a smoothed version of the original spectrum.
The coefficients are labeled from C0 to C12, where C0 represents
the average power in the signal (constant in the experiments in
this paper), and higher-order coefficients represent spectral shapes
with more ripples in the auditory frequency domain. In a later
section we show how to convert these 13-D representations into
their equivalent spectra, and then back into sound.

Pollard’s tristimulus model [6] is an alternative approach for
creating a descriptive two dimensional timbre space for harmonic
sounds. The tristimulus coefficients are computed as follows. We
calculate the loudness of each harmonic Ni according to Zwicker’s
specific loudness method. Next, the harmonics are devided into
three groups: one for the fundamental i = 1, and one each for
partials i = 2 . . . 4 and i = 5 . . . n. The loudness for each group
is computed using Stevens’ law:

Ni = 0.85Nmax + 0.15
X

j

Nj (1)

where j ranges over the harmonics in set i, Nmax is the value of
the largest partial in the group of the partials. Finally, the loud-
ness of all groups is normalized by the total loudness of three
groups: T1 = N1/N , T2 = N4

2 /N , T3 = Nn
5 /N where

N = N1 + N4
2 + Nn

5 . A larger T1 is associated with a “strong
fundamental”, while a larger T2 means “strong mid-frequency par-
tials” and a larger T3 means “strong high-frequency partials.” In
this paper we comparatively describe our model with the tristimu-
lus representation.
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Figure 1: An array of spectra generated for a 2-D range of LFC
coefficients. The column show C3 ranging from 0 to 0.75, the rows
show C6 ranging from 0 to 0.75. Compare the uniformity of the
frequency spacing of the peaks to those of Figure 2.

2.2. Resynthesis

In this study, we choose a 13-D vector and then synthesize sounds
from these coefficients using the inverse transforms of LFC and
MFCC. In both representations much information is lost, or equiv-
alently, many different sounds will lead to equivalent coefficients.
At each step in the transformation we choose the simplest spec-
trum. We reconstruct the smooth spectrum by inverting the LFC
and MFCC representations. For LFC, the reconstructed spectrum
S̃(f) is the IDCT of LFC vector C′

i. For MFCC, we first compute
the IDCT of the MFCC vector L̃i = IDCT(Ci). Then raising ten
to that power, F̃i = 10L̃i is the reconstructed filterbank output
for channel i. We then assume that F̃i represents the value at the
center frequencies of each channel, and render the reconstructed
spectrum S̃(f) by linearly interpolating values between the center
frequencies.

2.3. Prepared Stimuli

As it is difficult to fully explore a 13-D space, we chose discrete
pairs of coefficients from MFCC and LFC spaces, and measured
subject’s perceptual judgements in these 2-D spaces. Arbitrary
pairs were studied to give insight into how the representations be-
haved. The five pairs studied are [C3, C6], [C4, C6], [C3, C4],
[C3, C12], and [C11, C12].

Two of the 13 coefficients are chosen as variables and set to
non-zero values. For example, in the [C3, C6] space, the parameter
vector is [C3, C6] = [1, 0, 0, C3, 0, 0, C6, 0, 0, 0, 0, 0, 0]. The val-
ues of these parmeters are varied over the set C = [0, 0.25, 0.5, 0.75].
The vector is interpreted as LFC or MFCC for resynthesis.

2.4. Representation comparison

Any point in LFC or MFCC space is a sound. Figures 1 and 2
show an array of spectra as we vary the C3 and C6 components
of the vector, keeping all other coefficients but the C0 component
equal to zero. With both C3 and C6 coefficients set to zero, and
C0 = 1, the spectrum is flat. As the value of C3 increases, going
down the columns, there is a growing bump in the spectrum at DC
and in the mid-frequencies. As the value of C6 increases, going
across rows, three bumps increase in size.

0 2000 4000
0

1

2

A
m

pl
itu

de

0 2000 4000
0

1

2

0 2000 4000
0

1

2

0 2000 4000
0

1

2

0 2000 4000
0

1

2

A
m

pl
itu

de

0 2000 4000
0

1

2

0 2000 4000
0

1

2

0 2000 4000
0

1

2

0 2000 4000
0

1

2

A
m

pl
itu

de

0 2000 4000
0

1

2

0 2000 4000
0

1

2

0 2000 4000
0

1

2

0 2000 4000
0

1

2

A
m

pl
itu

de

Hz
0 2000 4000

0

1

2

Hz
0 2000 4000

0

1

2

Hz
0 2000 4000

0

1

2

Hz

Figure 2: An array of spectra generated for a 2-D range of MFCC
coefficients. The column show C3 ranging from 0 to 0.75, the rows
show C6 ranging from 0 to 0.75.

We can analyze any sound that we synthesize in LFC and
MFCC space with the tristimulus model and represent it as a point
in a 2D tristimulus space. The result of this analysis for the [C4,C6]
spaces are shown in Figure 3. Here each of the spectra we will
use in our experiment are plotted as a point in the T2-T3 tristimu-
lus space. The mapping between the rectangular sampling grid in
MFCC space and each sound’s point in tristimulus space is espe-
cially non-linear.

2.5. Additive FM synthesis

The voice-like stimuli used in this study are synthesized from the
spectrum derived in Section 2.2 using a source-filter model of speech.
The source is an impulse train with the desired pitch. The filtering
was implemented using additive synthesis. The amplitude of each
harmonic component is scaled based on the desired spectral shape.
The pitch, or fundamental frequency, f0, is 220 Hz, the frequency
of the vibrato v0 is 6 Hz, and the amplitude of the modulation V
is 6%. Using the reconstructed spectral shape S̃(f), with the har-
monics number n, the synthesized sound is

s =
X

n

S̃(n · f0) · sin(2πnf0t + V (1 − cos 2πnv0t)) (2)

3. EXPERIMENT

We measured the distance for several sets of timbre parameters
by asking subjects for their subjective evaluation of the difference
between two sounds in the prospective representation.

A stimulus consisted of two sounds, where the first is a refer-
ence sound and the second is a trial sound, with no pause between
the paired sounds. The reference sound was kept identical through
the entire experiment. It has a flat spectrum, all the 13 coefficients
are zero except C0 (i.e. [Cm, Cn] = [0, 0].) The second element
of each pair, the trial sound, was varied in each presentation pair.

For each of the ten sets of sounds we played five examples
to help the subjects understand the types and range of sounds that
appear on the main experiment. In the main experiment, a distance
measurement is recorded after playing a subject a pair of sounds.
The subject was asked to rate the degree of similarity between pair
elements on a scale of one to ten, where one is identical and ten
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Figure 3: Tristimulus plots of stimuli. C6 starts at 0 at the top of
each line and increases to 0.75.

is very different. The 16 stimuli in a set were presented to the
subjects in a random order.

Ten students with ages between 20 – 35 years old participated
in the experiment. The stimuli were presented to the subject using
a headset in a quiet office environment.

4. ANALYSIS METHOD

There are two steps in the analysis procedures. In the first step, we
fit the individual distance judgments to a simple Euclidean model.
We compute the residual from the model to evaluate the perfor-
mance of the representations (LFC and MFCC) on each subject.
In the second step, we computed the mean of the residuals and its
standard error for each of ten sets in order to evaluate the represen-
tation.

4.1. Individual Euclidean model fitting

For a two-dimensional test as performed, the Euclidean model pre-
dicts the perceptual distance, d, that subjects reported in the exper-
iment

d2 = ax2 + by2 (3)
where x is one of the 13 coefficients (e.g. C3) and y is another
coefficient (e.g. C6). Note that this is a linear equation in the
known quantities d2, x2 and y2. Multidimensional linear regres-
sion is used in order to test the fit of perceptual data to a Euclidean
model. The estimation of the regression model is done by the
least squares method, using the left inverse (pseudo-inverse) of the
matrix, which guarantees the minimum-error linear estimate. The
residual of the linear estimation is:

dres =
1

16

X

x, y

˛

˛

˛

d − d̂
˛

˛

˛

(4)

where d̂ is the estimated distance by the linear regression model.
Figure 4 shows the measured perceptual distances for one subject
and the estimated Euclidean model.

4.2. Integrating the individual timbre space of the subjects

Given the model residuals for individual subjects, the mean of the
residuals is calculated for each representation

d̄res =
1

N

N
X

i=1

dres,i (5)

where N is the number of subjects. The standard error σMean

is calculated as follows:

σMean =

q

PN
i=1 |dres,i − d̄res|2

N
(6)

By comparing the mean of the residuals and the standard error
of each representation, we decide which representation is a better
model of human perception.

5. RESULTS

Figure 5 compares the quality of the two perceptual spaces, LFC
versus MFCC, when tested with five different 2-D sets of parame-
ters. On average, either timbre space predicts the perceptual judg-
ment with a mean error of 1 point on a 10-point scale. In all cases,
the MFCC representation forms a better model of timbre space
than the simplified LFC representation. In other words, the 13 col-
ors in the MFCC representation allows for more accurate timbre
interpolation and creates a model where the parameter axis are or-
thogonal than the other representations we tested.

For most pairs of dimensions within a representation, the model
error is relatively constant. This result suggests that these pairs of
dimensions form an orthogonal perceptual model of timbre. This
is true even for a range of dimensions as close as C3 and C4 and
as wide as C3 and C12. But quite notably, the model error jumps
dramatically when we studied C11 and C12 dimensions. Since C3

and C12 proved to be a good model, evaluated by interpolation and
orthogonality, this suggests that the perceptual model is still linear
for higher-order dimensions. But when C11 and C12 are paired the
model error goes up, suggesting that these two dimensions are not
as orthogonal as the others.

The Euclidean models does an excellent job of predicting the
perceptual judgements. The variance of the residuals was 6.8 units2

for the LFC model (on a 10-point scale) and 3.9 for the MFCC
model. In both cases, the models were able to account for 66% of
the variance of the original distance judgements.

Figure 6 shows model residuals based on the tristimulus pa-
rameters. In this comparison, the same sounds and perceptual
judgements used in the LFC/MFCC comparison are reevaluated
using their tristimulus parameters. In general, in a pair-wise com-
parison, the LFC and MFCC models have a smaller residual error
(Figure 5) than the timbre representation based on the tristimulus
model (Figure 6).

Arguably, the tristimulus approach is at a disadvantage with
our tests because our reference sound is not at (0,0) in the tristim-
ulus space. We can compensate for this artifact by using a richer
Euclidean model that includes a offset (d2 = ax2 + by2 + c).

0
0.2

0.4
0.6

0

0.2

0.4

0.6

0

2

4

6

8

10

C
3

Measurement

C
6 0

0.2
0.4

0.6

0

0.2

0.4

0.6

0

2

4

6

8

10

C
3

Estimation

C
6

Figure 4: Plots of perceptual distances, a) measured b) idealized
model, for one subject.
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Figure 5: Model residuals and standard errors comparing MFCC
and LFC for five sets of axis.

When we did this, the tristimulus model residuals went down, as
one would expect since there is one more free parameters, but still
the residuals did not fall to the same level as the MFCC model
shown in Figure 5.

6. CONCLUSIONS

In this paper we have articulated a set of criteria for evaluating a
timbre space, described three representations of timbre, measured
subject’s perceptual distance judgments, and found that a model
for timbre based on the MFCC representation accounts for 66% of
the perceptual variance.

This result is interesting because we have shown an objective
criteria that describes the quality of a timbre space, and established
that MFCC parameters are a good perceptual representation for
static sounds. Previous work has demonstrated that MFCC (and
other DCT-based models) produce representations that are statisti-
cally independent. This work suggests that the auditory system is
organized around these statistical independences and that MFCC
is a perceptually-orthogonal space. The procedure described in
this paper does not give a closed-form solution to the timbre-space
problem. All we can do is test a representation and see if it is par-
simonious with perceptual judgments. This paper is the first step
towards a complete model of timbre perception.

We can not make a comparison of LFC and MFCC spaces just
based on Figure 6. As far as the tristimulus model is concerned,
the 16 sounds we used to test our models are arbitrary sounds.
Further, we expect the Euclidean model to hold whether the sounds
are on a rectangular grid, as they are in the LFC and MFCC case,
or randomly positioned as they are in the tristimulus space. We
expect all these models to only work in a local region—these initial
models are bound to fail at extreme points in timbre space. The
sounds that we synthesized from LFC space cover a wider range
of the tristimulus space than the MFCC-generated sounds. This
different could account for the difference in performance between
MFCC-generated sounds and LFC-generated sounds in Figure 6.

Our comparison of LFC and MFCC representations is based
on two separate sets of sounds that are synthesized from 2D man-
ifolds in LFC and MFCC space. Since these two sets of sounds
cover different extents of the timbre space, we can not be sure that
their relative difference in our tests are caused by the different cov-
erage of timbre space. We are evaluating how we can perform the
tests we describe here, sampled in arbitrary 13-D timbre spaces.

LFC MFCC LFC MFCC LFC MFCC LFC MFCC LFC MFCC
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

av
er

ag
e 

re
si

du
al

s

[C3, C6] [C4, C6] [C3, C4] [C3, C12] [C11, C12] 

Figure 6: Model residuals and standard errors for 10 sets of
sounds as represented by the tristimulus model.

Most importantly, the timbre representations we tested here
are static; sounds are not. Many timbre models find that onset
time, for example, is an important component of timbre percep-
tion. But the criteria (linearity and orthogonality) we described
here are important as we add features to the timbre space.

Finally, we have not begun to understand the contextual differ-
ences involved in timbre for sound perception [7]. However, this
work addresses the underlying representational issues.
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