
Analysis of the GCR method
with mixed precision arithmetic using QuPAT

Tsubasa Saitoa,∗, Emiko Ishiwatab, Hidehiko Hasegawac

a Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo
162-8601, Japan

b Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
c University of Tsukuba, 1-2 Kasuga, Tsukuba-shi, Ibaraki 305-8550, Japan

Abstract

To verify computation results of double precision arithmetic, a high precision
arithmetic environment is needed. However, it is difficult to use high precision
arithmetic in ordinary computing environments without any special hardware or
libraries. Hence, we designed the quadruple precision arithmetic environment
QuPAT on Scilab to satisfy the following requirements: (i) to enable programs
to be written simply using quadruple precision arithmetic; (ii) to enable the use
of both double and quadruple precision arithmetic at the same time; (iii) to be
independent of any hardware and operating systems.
To confirm the effectiveness of QuPAT, we applied the GCR method for ill-conditioned
matrices and focused on the scalar parametersα andβ in GCR, partially using DD
arithmetic. We found that the use of DD arithmetic only forβ leads to almost the
same results as when DD arithmetic is used for all computations. We conclude
that QuPAT is an excellent interactive tool for using double precision and DD
arithmetic at the same time.
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1. Introduction

Floating point arithmetic operations governed by IEEE754, for example, dou-
ble precision arithmetic, is used for calculation on conventional computers. How-
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ever, in floating point arithmetic, we cannot avoid the cancellation of significant
digits, round-off errors and information loss. The iterative method for solving a
system of linear equations converges in theory, but it is known that it may not
converge in practice when floating point arithmetic is used. To examine the effect
of these errors, we need to use higher than double precision arithmetic. However,
it is difficult to use high precision arithmetic in ordinary computing environments
without any special hardware. In addition, many software packages do not have a
specification for high precision arithmetic.

Double-Double(DD) arithmetic uses numbers that are represented by two dou-
ble precision floating point numbers to facilitate high precision arithmetic. DD
arithmetic has been proposed for quasi quadruple precision arithmetic by Bai-
ley [1] and it is based on the algorithm for error-free floating point arithmetic by
Dekker [3] and Knuth [5]. QD [1] and Lis [6] are implementations of DD arith-
metic as program libraries in C and C++. However, to use quadruple precision
arithmetic, programs have to be rewritten and such rewritten programs cannot be
executed without special hardware or a special library; also we meet debugging
difficulties in the rewriting process.

We discuss the convenient quadruple precision arithmetic environment QuPAT
(Quadruple Precision Arithmetic Toolbox)[8, 10] with DD arithmetic. In design-
ing QuPAT, we focused on achieving the following goals: (i) the capacity to write
programs simply to use quadruple precision arithmetic; (ii) simultaneous use of
both double and quadruple precision arithmetic; (iii) independence from any par-
ticular hardware and operating systems. To satisfy these conditions, we chose the
interactive numerical software Scilab.

To confirm the effectiveness of QuPAT, we attempted to improve the conver-
gence of iterative methods by using high precision arithmetic for ill-conditioned
matrices. We examined whether convergence of the Generalized Conjugate Resid-
ual (GCR) method could be improved with partial use of DD arithmetic. We re-
tained a double precision matrix, and computed the matrix-vector product with
double precision arithmetic. The scalar parametersα andβ in GCR were calcu-
lated using DD.

This paper is organized as follows. In Section 2, we present DD arithmetic and
describe the characteristics of QuPAT. In Section 3, we show the effectiveness of
QuPAT for analyzing the convergence of the GCR method for a system of linear
equations. In Section 4, we present a summary and discuss future work.
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2. Implementation of QuPAT

In this section, we first explain the concept of DD arithmetic, which is based on
error-free floating-point algorithms; then we describe how to implement QuPAT
and some of its features.

2.1. DD arithmetic

A DD number is represented using two double precision floating point num-
bers. A real numberα is represented as a DD numberA = (Ahi,Alo), as defined
below:

Ahi = ( α rounded to a double precision number)

Alo = ( (α − Ahi) rounded to a double precision number)

The sign and the exponent part of a DD number depend only onAhi. The four
arithmetic operations of DD are defined only using double precision arithmetic
and some error-free floating point arithmetic algorithms by Dekker[3] and Knuth[5].
Please see Saito et al. [8] and Bailey [1] for details of DD arithmetic.

2.2. Implementation of the DD arithmetic environment QuPAT

In [8], we implemented an environment for quadruple precision arithmetic
QuPAT [10] using DD arithmetic. In designing QuPAT, we focused on the fol-
lowing points:

• Programs can be written simply to use quadruple precision arithmetic.

• Both double and quadruple precision arithmetic should be usable at the
same time.

• Any hardware and operating systems should be able to be used.

To satisfy these conditions, we chose the popular interactive numerical software
package Scilab [9]. Scilab offers the following features:

• New data types can be defined.

• Operator overloading can occur and can be used deliberately.

We now describe how QuPAT is implemented and which characteristics of Scilab
are used for this implementation. As mentioned above, new data types can be
defined in Scilab. We treat a data type using a combination of some data as a
class in C++. In Scilab, double precision numbers are defined by the data type
named ‘constant’. Scalars, vectors and matrices are treated in the same way as the
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data type ‘constant’. Therefore, by using the Scilab function ‘tlist’, we can define
a new data type named ‘dd’ to contain DD numbers. In addition, defining only
the data type ‘dd’ enables elements to be expanded into DD numbers naturally.
Furthermore, we can make use of operator overloading for the new data type ‘dd’.
Allowing operator overloading to compute a value of ‘dd’, we can use the same
operators (+,−, ∗, /) for quadruple precision arithmetic as for double precision
arithmetic.

Figure 1 shows the relationship between Scilab (left) and QuPAT (right). We
can use both ‘constant’ (i.e. double precision) and ‘dd’ (i.e. quadruple precision)
data types at the same time, with the same operators (+,−, ∗, /). To convert a
value between the types ‘constant’ and ‘dd’, functions ‘d2dd’ and ‘DD.hi’ are
used. The Scilab environment can be naturally extended to use DD arithmetic and
mixed precision arithmetic with QuPAT.

Thus a Scilab program with QuPAT can use DD arithmetic by means of a small
change in the definition of data types. As a result, we can avoid introducing bugs
and even if some do occur, debugging is easy. As we implement QuPAT using
only Scilab functions, we can use QuPAT in any computational environment for
which Scilab is installed. The ratio of computation time between double and DD
depends only on the number of double precision operations for DD arithmetic,
and this ratio is machine independent.

QuPAT

constant dd

operator

+ - * /

== < > >= <=

operator

+ - * /

== < > >= <=

conversion

Scilab

ddzeros(m,n)

ddlu(A),ddgqr(A),

ddnorm(a),・・・

d2dd(a), DD.hi

norm(a),・・・

zeros(m,n)

lu(A),qr(A),

functions functions

Figure 1: Relationship between Scilab and QuPAT in [10]

3. Analyzing the effect of round-off errors in the GCR method with QuPAT

The Generalized Conjugate Residual (GCR) method [4] is one of the Krylov
subspace methods to solve a nonsymmetric linear systemAx = b. GCR has
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the theoretical property that the residual norm of the approximate solution vector
‖rk‖ = ‖b − Axk‖ decreases at each iteration and converges after at mostn itera-
tions, wherek is the number of iterations andn is the dimension of the matrixA.
However, when using floating point arithmetic, sometimes the iteration process
may not converge [2].

1. Let x0 be an initial guess.

2. setr0 = b − Ax0, p0 = r0, q0 = Ap0, k = 0

3. while ||rk||2 < ε||r0||2 andk < n do

4. αk = (rk, qk)/(qk, qk)

5. xk+1 = xk + αkpk

6. rk+1 = rk − αkqk

7. For i = 0, · · · , k do

8. βk,i = −(Ark+1, qi)/(qi , qi)

9. pk+1 = rk+1 +
∑k

i=0 βk,i pi

10. qk+1 = Ark+1 +
∑k

i=0 βk,i qi

11. k = k+ 1

Figure 2: GCR algorithm [4]

Figure 2 shows the algorithm for GCR. In this section, we investigate the numeri-
cal solution of a linear system by GCR using double precision and DD arithmetic.
All experiments were carried out on a PC with an AMD Turion X2 Dual-Core
2.0 GHz CPU and Scilab version 5.1.1 running on Windows XP. The iteration
was started withx0 = 0 and the right-hand side vectorb was given by sub-
stituting the solutionx∗ = (1,1, ..., 1)T into b = Ax∗. Stopping criteria were
‖rk‖2 ≤ 10−12 ‖r0‖2 for double precision and‖rk‖2 ≤ 10−14 ‖r0‖2 for DD. We
chose a slightly stricter stopping criterion for DD compared to double precision.

3.1. Comparison between double and DD

We compare the results of using double precision arithmetic versus DD arith-
metic. In this section, ‘double’ denotes the use of only double precision numbers
and arithmetic and ‘DD’ denotes the use of only DD numbers and arithmetic. We
compare the results of ‘double’ versus ‘DD’.

The difference in the program between ‘double’ and ‘DD’ is only in the def-
inition of the variables and the name of the functions to compute a norm and an
inner product in QuPAT. We take up DORR in Matlab and other test matrices from

5



MatrixMarket [7]. We chooseθ = 0.004 for DORR. Condition numbers are ob-
tained using the Scilab function ‘cond’. Table 1 shows the list of test matrices.

Table 1: Properties of test matrices

Matrix Dimension Condition number
arc130 130 6.05× 1010

impcol c 137 1.77× 104

fs 183 6 183 1.74× 1011

DORR (θ = 0.004) 300 6.82× 1014

pores3 532 5.61× 105

Table 2: Comparison of the results of using double precision and DD arithmetic

Matrix
Double DD

Iterations Residual Error Iterations Residual Error
arc130 † 7.31e-11 1.82e+00 15 7.15e-16 2.40e-06

impcol c † 2.73e-01 2.97e+00 † 7.13e-10 3.01e-08
fs 183 6 † 8.40e-09 7.70e+00 45 7.25e-15 7.40e-06
DORR 114 9.08e-13 9.78e-01 155 8.49e-18 1.03e-08
pores3 † 3.16e-06 3.06e-02 474 9.48e-15 3.81e-12

† : No convergence.

Table 2 shows the numerical results of ‘double’ and ‘DD’. ‘Iterations’ denotes
the number of iterations required for convergence, ‘Residual’ denotes‖r‖2/‖r0‖2
and ‘Error’ denotes‖x − x∗‖∞/‖x∗‖∞. We consider arc130 and give details of the
comparison between ‘double’ and ‘DD’. Figure 3 shows the convergence. In the
case of ‘double’, the relative residual norm stagnated at about 1.0× 10−10 and the
error norm was 1.81× 100 after 10 iterations. On the other hand, in the case of
‘DD’, the relative residual norm became 7.15× 10−16 and the error norm became
2.40× 10−6 after 15 iterations. This is a significant improvement.

3.2. Comparison betweenα andβ using mixed precision

The GCR for arc130 converges for ‘DD’ but does not converge for ‘double’.
This may be caused by round-off error. However, if we carry out all of the com-
putation using DD, we need more time and storage space. For example, we can
compare the computation time for 1 iteration by GCR for arc130. This takes
0.036 seconds with ‘double’, but 0.947 seconds with ‘DD’; thus, DD takes about
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Figure 3: Convergence of arc130 in ‘double ’ and ‘DD’

26 times as long. In addition, a DD number requires twice the amount of stor-
age. We investigated whether it was possible to improve convergence by using
DD arithmetic only partially in the iterative process. We focused on two scalar
parametersαk andβk,i and considered the following two strategies:

（1）Compute the scalarαk and vectorsxk+1 andrk+1 with DD arithmetic from
line 4 to line 6 in Figure 2. Retainαk andrk+1 as DD numbers.

（2）Compute the scalarβk,i and vectorspk+1 andqk+1 with DD arithmetic from
line 7 to line 10 in Figure 2. Retainβk,i andqk+1 as DD numbers.

Computation with 1 iteration of GCR for arc130 takes 0.078 seconds using strat-
egy (1), and 0.370 seconds using strategy (2); thus the time is much less than
for ‘DD’. Table 3 shows the numerical results of using strategies (1) and (2). The
stopping criterion was‖rk‖2 ≤ 10−14 ‖r0‖2. With strategy (1), residual norms were
not improved for all matrices. In contrast, with strategy (2), residual norms were
improved for all matrices. GCR with strategy (2) converges for arc130, fs183 6,
DORR and pores3. Note that the numbers of iterations for arc130, fs183 6 and
pores3 are almost the same as when using ‘DD’. For impcolc, strategy (2) re-
sulted in a residual norm value of 3.25×10−8 and an error norm value of 2.40×10−6

after 137 iterations. This does not satisfy the stopping criterion, but is surely an
improvement on the error norm value of 2.97× 100 of ‘double’. Figure 4 shows
the convergence of DORR. The number of iterations of DORR using strategy
(2) is 183, thus 18% more than is required by ‘DD’. The residual norm becomes
1.36×10−14. However, the error norm is about 1.0×10−2, which is not an improve-
ment. Figure 5 shows the convergence of pores3. The residual norm for pores3
decreases gradually. In the case of ‘double’, the residual norm stagnates. However
using strategy (2), the residual norm continues to decrease, and the convergence
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Table 3: Partial use of DD arithmetic in GCR

Matrix
Strategy (1) Strategy (2)

Iterations Residual Error Iterations Residual Error
arc130 † 8.82e-11 2.29e+00 15 3.17e-15 2.40e-06

impcol c † 2.28e-01 2.92e+00 † 3.25e-08 2.40e-06
fs 183 6 † 8.84e-09 7.92e+00 47 7.18e-15 7.16e-06
DORR † 8.31e-14 9.86e-01 183 1.36e-14 9.42e-03
pores3 † 3.17e-06 3.07e-02 474 1.47e-14 4.05e-12

† : No convergence.

is similar to that of ‘DD’.
In this way, partially using DD arithmetic, such as with strategy (2), can im-

prove the convergence of GCR. In some cases, using strategy (2) produces almost
the same results as ‘DD’. The number of iterations is the same for both ‘DD’ and
strategy (2). The computation time for arc130 is 8.27 seconds with ‘DD’ and 1.92
seconds for strategy (2) until GCR converges. We carried out the same experi-
ment on another PC with an Intel Core2 Quad 2.83 GHz CPU and Scilab version
5.1.1 running on Windows XP. The computation time for arc130 is 2.20 seconds
with ‘DD’ and 0.50 seconds for strategy (2). From the results of both PC envi-
ronments, the computation time for strategy (2) is about 4 times faster than that
with ‘DD’. Twice the storage space is required if all variables are declared as DD
numbers. Using strategy (2), the required storage is about 1.5 times that required
for ‘double’.
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3.3. Further detailed examination forβ

In section 3.2, we confirmed that using strategy (2) improves the value of the
residual norm. Recall that strategy (2) involves the computation of both the scalar
βk,i and vectorspk+1 andqk+1 in DD arithmetic. We separate (2) into two sub-
strategies to investigate further, as follows:

(2.1) Compute the scalarβk,i using DD arithmetic at line 8 in Figure 2. Retainβk,i

as a DD number.
(2.2) Compute the vectorspk+1 andqk+1 with DD arithmetic at line 10 and line

11 in Figure 2. Retainqk+1 as a DD number.

Strategy (2) in Section 3.2 is thus a combination of (2.1) and (2.2). Table 4 shows
the numerical results. The residual norms stagnated at almost the same rate as
with ‘double’ for both strategies (2.1) and (2.2), and the residual norms were
not improved. It is important to compute all of the following values with DD
arithmetic:

• the inner product and the division forβk,i (line 8)

• pk+1 = rk+1 +
∑k

i=0 βk,i pi (line 9)

• qk+1 = Ark+1 +
∑k

i=0 βk,i qi (line 10)

In addition, we need to declareqk+1 as a DD number. We are still able to use
double precision arithmetic to compute the matrix-vector productArk+1 at line 7
and line 10 in Figure 2.

Table 4: Further detailed examination ofβ

Matrix
Strategy (2.1) Strategy (2.2)

Iterations Residual Error Iterations Residual Error
arc130 † 1.02e-11 2.76e-01 † 6.41e-11 1.51e+00

impcol c † 2.23e-01 2.87e+00 † 2.69e-01 2.53e+00
fs 183 6 † 7.77e-10 4.62e+00 † 7.63e-09 8.33e+00
DORR 182 1.49e-14 9.22e-03 † 8.30e-14 9.83e-01
pores3 † 2.51e-06 2.16e-02 † 3.18e-06 3.09e-02

† : No convergence.

3.4. Result of partial accuracy improvement for GCR

We investigate the improvement of convergence of the GCR method when DD
arithmetic was partially used. Convergence was improved for five kinds of matri-
ces by using strategy (2), which utilizes DD arithmetic for both computation and
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memory for the scalarβk,i and the vectorspk+1 andqk+1. In contrast, convergence
was not improved by using DD arithmetic for the scalarβk,i alone or by using it
for the vectorspk+1 andqk+1 alone. The computation time when using strategy (2)
was nearly one quarter of that with ‘DD’. Convergence was not improved by using
strategy (1) that employed DD arithmetic for computing both the scalarαk and the
vectorsxk+1 andrk+1. These strategies are much faster and use less memory than
DD arithmetic requires. From these investigations, it appears that the round-off

errors in computing the scalarβk,i and the vectorspk+1 andqk+1 may lead to the
stagnation of the residual norm for ill-conditioned matrices in GCR.

To carry out these investigations, the only changes in the Scilab program for
QuPAT involved the definition of data types and the name of the functions. In
addition, we were able to use all of double, quadruple and mixed precision arith-
metic in the same program with the same operators (+,−, ∗, /). Therefore, we
were able to easily compare the dependency of GCR on computing accuracy.

4. Conclusion

In this paper, we discussed an implementation of the interactive quadruple
precision arithmetic environment QuPAT and showed the effectiveness of QuPAT
by improving the convergence of the GCR method for ill-conditioned matrices. In
designing QuPAT, we focused on these goals: (i) to enable programs to be written
simply using quadruple precision arithmetic; (ii) to enable the use of both double
and quadruple precision arithmetic at the same time; (iii) to be independent of
any hardware and operating systems. To satisfy these conditions, we chose the
interactive numerical software package Scilab. Using QuPAT, we can use double,
quadruple and mixed precision arithmetic in the same program with the same
operators (+,−, ∗, /). Because of these features, we can write programs to use DD
arithmetic in a simple fashion.

We investigated the improvement in convergence of the GCR method which
arises from partially using DD arithmetic with QuPAT. We investigated accuracy
improvements with respect to the two scalarsαk andβi,k in GCR. Convergence was
improved by using DD arithmetic for computing both the scalarβk,i and the vectors
pk+1 andqk+1. In contrast, convergence was not improved by using DD arithmetic
for computing either the scalarβk,i or the vectorspk+1 andqk+1 independently. If
we carry out all of the computation using DD arithmetic, we need more time and
storage space. A DD number requires twice the amount of storage. Using our
strategy, required storage is about 1.5 times that required for using only double
precision arithmetic. In addition, computation time by our strategy is about one
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quarter compared to that where DD is used for all computation.
QuPAT is an excellent tool to allow the use of double, DD and mixed precision

arithmetic naturally, and to investigate the effect on round-off errors with a partial
accuracy improvement. The Scilab program with QuPAT is able to incorporate
DD arithmetic with a small change in the definition of data types and function
names. Therefore, the readability of programs with QuPAT is almost the same
as that of ordinary Scilab programs. As QuPAT is independent of any hardware
and operating systems, these programs are executable without any other change
in the computing environment. As a consequence, we can easily carry out an
investigation such as the one above with QuPAT.

On Scilab, we can also implement quad-double arithmetic in the same way
as DD arithmetic in QuPAT. We also intend to analyze other iterative algorithms
using QuPAT. These topics will be discussed elsewhere.
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