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Abstract—Singing techniques are used for expressive vocal
performances by employing temporal fluctuations of timbre,
pitch, and other components of the voice. In this study, we
compare the performances of hand-crafted features and automat-
ically extracted features using deep learning methods to identify
different singing techniques. Hand-crafted acoustic features are
based on expert knowledge of singing voice whereas the deep
learning methods take low-level feature representations, such as
spectrograms and raw waveforms, as inputs and learn features
automatically using convolutional neural networks (CNNs). These
extracted features are used as an input to the random forest
classifier for comparison with the hand-crafted features for 10-
class singing technique classification. We show that the CNN-
based features outperform the hand-crafted features in terms
of classification accuracy. Furthermore, we explore various time-
frequency representations as an input to the CNNs. We show that
the best performing input is multi-resolution short-time Fourier
Transform (STFTs), when the CNN kernels are oblong and they
slide on the frequency- and time-axis directions separately.

I. INTRODUCTION

In a vocal performance, singers often fluctuate the pitch,
loudness, and timbre of their voice to make a song more
expressive. Such fluctuations are commonly called singing
techniques. At the signal level, singing techniques are observed
in time–frequency representations as heavy temporal modula-
tions of harmonic frequencies such as vibrato or highly noisy
components over broad frequency bands such as a whisper
voice. Singing technique classification is a challenging task
because dynamic changes in multiple factors such as pitch,
loudness, and timbre occur simultaneously.

We investigated the time-frequency representations for
singing technique classification. Traditional hand-crafted fea-
tures such as Mel-frequency cepstral coefficients (MFCCs)
and other representations rich in time-frequency information
plugged into CNNs are compared in terms of their efficiency
in the automatic classification of singing techniques.

Well-designed feature representations of a singing technique
will enable an automatic discrimination among the patterns of
spectro-temporal fluctuations in vocal performance. In the field
of music information retrieval (MIR), hand-crafted features,
which are designed based on expert knowledge, have been
successful. Several hand-crafted features have been proposed

to capture the characteristics of timbre and modulation. A
data-driven approach based on deep neural networks (DNNs)
recently outperformed conventional methods based on hand-
crafted features in other MIR tasks, and we anticipate that a
similar approach can also be effective in singing technique
classification. In particular, we want to focus on convolutional
neural networks (CNNs) as feature extractors because of
their invariance to time shifts and frequency transpositions.
A variety of acoustic feature representations, such as raw
waveforms, time-frequency representations (e.g., STFT), or
time-frequency representations using log-scaled filter banks
(e.g., a Mel-spectrogram), have been employed as inputs to a
CNN. However, the most suitable input representation differs
depending on the type of MIR task [1]. Because of the
temporal and noisy nature of singing techniques, suitable rep-
resentations for singing technique classification should better
capture the time-frequency properties of the audio signal than
those for the other MIR tasks.

In this paper, we compare and evaluate various audio feature
representations to find an effective representation for singing
technique classification. Our experimental results show that
a multi-resolution STFT with a CNN works best (77.8 %
classification accuracy), outperforming commonly used fea-
ture representations such as an MFCC (66.9 %) and Mel-
spectrogram (72.8 %).

II. RELATED WORK

MFCCs are among the most popular hand-crafted fea-
tures for timbre, containing information regarding the spectral
envelopes. MFCCs are used in many singing voice-related
MIR tasks such as singer identification [2], sung language
identification[3], and gender identification of the singer[4].

MFCCs have also been used in combination with other
acoustic features to classify singing-technique-related aspects.
Stoller et al. [5] investigated a variety of acoustic features in
relation to a 4-class phonation mode (i.e., normal, breathy,
pressed, flow) classification performance. The authors indi-
cated that the combination of 80-dimensional MFCCs, cepstral
peak prominence, and temporal flatness is the best feature
set for phonation mode classification with an accuracy of
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78%. In addition, Kroher et al. [6] combined 13-dimensional
MFCCs with vibrato features and statistics (e.g., the register
of the singer and number of occurrences of various singing
expressions) as features for singer identification. As a result,
the performance reached 83.1%, which was 23.1% higher than
that of MFCCs alone.

Recent studies in the area of instrument technique iden-
tification have explored representations other than MFCCs
to exploit more detailed time-frequency information. There
are a number of studies on instrument playing technique
identification that use representations other than MFCCs,
namely, a guitar playing technique using sparse coding[7],
Hartley transform[8], a violin playing technique [9], piano
sustain pedal detection using Mel-spectrograms [10], playing
technique classification of Chinese bamboo flutes using a
wavelet scattering transform [11], [12], and guqin techniques
using a constant-Q transform, pitch salience, and pitch contour
[13]. Finally, Lostanlen et al. [14] used a wavelet scattering
transform to classify instrumental playing techniques of mul-
tiple instruments simultaneously. Using these representations,
which are rich in time-frequency information for singing
technique identification seem promising because they capture
the time-frequency details better than MFCCs.

Several studies have used DNNs for the classification of
singing voices and instrumental playing techniques. Abeßer et
al. [15] investigated the efficiency of CNN-based feature ex-
traction for pitch contour classification. The results of solving
four different tasks show that a CNN with a simple structure
can achieve the same discriminative performance as hand-
crafted features. We used this framework for the automatic
extraction of audio features.

III. METHODS

A. Datasets

In this study, we use VocalSet [16], which is the only
publicly available database for studies on singing technique.
VocalSet is a large-scale dataset that contains singing voices
by 20 different professional singers (9 female and 11 male),
performing 17 different singing techniques in various contexts
such as arpeggio, scale, and long tones. We selected the
samples corresponding to 10 different singing techniques (belt,
breathy, inhaled singing, lip trill, spoken excerpt, straight tone,
trill, trillo, vibrato, and vocal fry) by all singers from VocalSet,
which resulted in 915 files ranging in length from 1.7 to 21.5
s. We then split the audio signals in each file into 3-s audio
clips and non-overlapping chunks at a sample rate of 44.1
kHz, resulting in 4905 samples. The details of these samples
are listed in Table I.

B. Method of model comparison

To compare the hand-crafted features and other feature
representations, we employ the method shown in Figure 1.
Multiple feature representations are combined with a common
classifier, and the classification results with each feature rep-
resentation are compared. Since our focus is on the feature
learning, we use a single classification algorithm for all

TABLE I
SELECTED SAMPLES FROM VOCALSET.

Label name Type Samples #
straight None 1241
belt Timbre 423
breathy Timbre 455
vocal fry Timbre, Modulation 587
vibrato Modulation 1034
trill Modulation 323
trillo Modulation 242
lip trill Modulation 376
inhaled Other 151
spoken Other 73

experiments (random forest [17]). This classifier was used
successfully in combination with learned features in several
audio classification works.[18], [19], [20]

We trained each feature extractor (CNN) using the feature
representations calculated from the training set data. In fea-
ture extractor learning, each extractor uses the relevant time-
frequency representations as input and their class labels of
singing techniques as targets. The details of feature extractor
learning are shown in Figure 2. The output of each extractor
is denoted by a feature vector. Next, we trained random forest
classifier models with 50 trees using feature vectors. Finally,
we evaluated the classification performance of the test set.
For the evaluation, we computed multiple accuracy metrics,
as described in Section III-E.

C. Hand-crafted Features

We employ a 20-dimensional MFCC and two vibrato fea-
tures (vibrato extension and vibrato rate) for the hand-crafted
feature set. We used Librosa [21] for the MFCC calculations.
For vibrato, the pitch contour was computed using CREPE
[22] and input into Essentia [23] to calculate the vibrato
features. To capture various pitch modulation, the ranges of
vibrato thresholds are set to 2–10 [Hz] for the vibrato rate,
and 10–200 [cents] for vibrato extent (i.e., vibrato depth). Each
feature was averaged over all time lengths of an audio clip.
A total of 22 dimensions of the hand-crafted features (20 for
MFCCs and 2 for vibrato) were used. We denote this setting
of features as Hand-crafted.

D. Learning Features

Although hand-crafted features do not require a learning
process, the other representations require feature extractor
learning (i.e., automatic extraction of feature vectors using
neural networks). Figure 2 illustrates our supervised method
for feature extractor learning, which was inspired by Abeßer
et al. [15]. We compared four different types of settings: a raw
waveform, STFTs, Mel-spectrograms, and a wavelet-scattering
transform.

1) Raw waveforms: Under this condition, we feed a raw
audio waveform to the network directly. Wilkins et al. [16]
used a CNN model that inputs raw waveforms for singing
technique classification. We use a 1D-CNN, which has three
1D-convolution blocks. We denote this setting as a Wave.
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Fig. 1. Method of model comparison.

Fig. 2. Details of feature extractor learning.

2) STFT magnitude spectrograms: Spectrograms using
STFT are the most basic time-frequency representation. We
calculated the magnitude spectrograms by applying an STFT
with a Hann window with a length of 2048 and a hop size of
512. As a result, each spectrogram had 1024 frequency bins
and 259 timeframes.

Takahashi et al. solved musical instrument classification
using magnitude spectrograms as input for a CNN [24]. We
modified their model for our spectrogram-based feature ex-
tractor to accommodate a longer signal duplication, as shown
in Table II. We denote this setting as STFT. In addition, we in-
vestigated multi-resolution spectrograms [25] to capture time-
frequency modulation patterns more accurately. We obtain a
multi-resolution spectrogram by stacking three spectrograms
with different time-frequency resolutions along the channel
dimension. To maintain the same size for all spectrograms with
different time-frequency resolutions, we applied zero padding
while fixing the hop size. We have two conditions in this
category, which we denote as Multi-1, having window sizes of

TABLE II
CONFIGURATION OF STFT-BASED CNN (USED FOR BOTH STFT

SPECTROGRAM CNN AND MULTI-RESOLUTION SPECTROGRAM CNN.)
EACH CONVOLUTIONAL LAYER INCLUDES A BATCH NORMALIZATION,

RELU ACTIVATION, AND DROPOUT (0.3).

Layer Configuration
Conv1 Convolution (1× 4), MaxPool (4× 4)
Conv2 Convolution (1× 16), MaxPool (4× 4)
Conv3 Convolution (4× 1), MaxPool (3× 3)
Conv4 Convolution (16× 1), MaxPool (2× 2)
Flatten

FC 512
FC (Feature) 22
FC (Softmax) 10

(2048, 1024, 512), and Multi-2, with window sizes of (2048,
512, 128).

3) Mel spectrograms: Mel spectrograms are the most com-
mon time-frequency representations in many audio classifica-
tion tasks using a DNN. Mel spectrograms were calculated
by feeding magnitude spectrograms into a mel filterbank. We
used 128-dimensional mel spectrograms derived from STFT-
spectrograms computed with a Hann window of 2048 samples
(25% overlap) at 44.1 kHz. We denote this setting as MelSpec.

4) Wavelet scattering transform: Under this condition, a
wavelet scattering transform replaces the steps of “conversion
into a representation” and “convolutional layers” in Figure 2.
A wavelet scattering transform is a cascade of wavelet filter
banks, applying a non-linearity operation (i.e., taking absolute
values) after each convolution. The structure of the wavelet
scattering transform is similar to that of a CNN. However,
their weights are hand-crafted to encode prior knowledge of
the task at hand.
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TABLE III
RESULTS OF CLASSIFICATION ACCURACY.

Methods Balanced Accuracy Top-2 Top-3
Hand-crafted 0.525 0.669 0.796 0.885
MelSpec 0.636 0.728 0.893 0.953
Scattering 0.668 0.754 0.894 0.947
STFT 0.713 0.770 0.920 0.946
Multi-1 0.719 0.770 0.922 0.964
Multi-2 0.727 0.778 0.917 0.966
Wave 0.589 0.684 0.849 0.927

We use Kymatio [26] for computing the wavelet scat-
tering transform. We use first- and second-order scattering
coefficients, which are the outputs of the wavelet scattering
transform, as input feature representations for the FC layer.
We denote this setting as Scattering. For a wavelet scattering
transform only, an input signal must be a power of 2. There-
fore, we set the input length to T = 217, which corresponds
to approximately 2.97 s, which is roughly similar to 3 s for
the other conditions.

E. Evaluation Metrics

We evaluated each model using four metrics: balanced
accuracy, accuracy, top-2 accuracy, and top-3 accuracy. The
number of samples in each class of VocalSet was imbalanced,
as shown in Table I. Therefore, in addition to the normal
accuracy, an evaluation using a balanced accuracy [27] was
conducted. We also evaluated the class-wise F1-score to
investigate the characteristics of each method.

For each condition, we repeat the experiment 5 times with
different data splits, and calculated the mean and standard error
of the above metrics. The accuracy values reported in the next
section are the means of repeated measurement.

IV. EXPERIMENTS AND RESULTS

A. Experiment 1: A comparison of feature representations with
fixed dimensions

First, we compared the performances of all feature repre-
sentation settings under the fixed dimension size, i.e., using
the feature vector of length 22. The results of Experiment
1 are shown in Table III and Figure 3. STFT-based models
(STFT, Multi-1, and Multi-2) outperformed the other models.
These STFT-based models performed particularly well in
breathiness-related techniques such as breathing and vocal fry.

In addition, we visualized the feature vectors obtained by
the hand-crafted feature and STFT-based methods (STFT and
Multi-2). The number of dimensions of the feature vectors
was compressed from 22 to 2 using t-distributed stochastic
neighbor embedding (t-SNE) [28], and the 10 classes were
visualized by highlighting them with color. Feature vectors
obtained using STFT-based methods of the same class are
mapped more closely to each other than those of the hand-
crafted condition.

B. Experiment 2: Ablation study

We further investigated the combination of feature rep-
resentation and different types of CNNs to determine the

critical factors in the classification performance. To conduct
this ablation study, there are two factors: the CNN architecture
and time-frequency representation.

The best-performing STFT-based models have a unique
architecture that differs from the standard CNN. The convolu-
tional layers of our model are oblong, that is, the kernel length
for one axis (e.g., time) is longer than that for another axis
(e.g., frequency). By contrast, under the MelSpec condition,
we used kernels with a square shape (3 × 3), which is
the standard architecture for CNN-based image processing.
We therefore compare all combinations of the selected input
feature representations (MelSpec, STFT, and Multi-2) and
CNNs. For the sake of simplicity, we denote two different
types of CNN as follows: square (a CNN model in which all
convolutional layers have square kernels) and oblong (a CNN
model in which each convolutional layer has a length along
only one axis). The configurations of these kernel shapes are
listed in Table V. The results of Experiment 2 are shown in
Table VI and Figure 5.

C. Experiment 3: Changing the feature vector dimension

We further investigated the performance by increasing the
dimensions of the feature vectors by changing the output size
of the FC layer. We examined four types of dimension sizes
(i.e., 22, 44, 88, and 200) under the Multi-2 condition, which
performed best in Experiment 1. The results are shown in
Table VII. Increasing the size of the features does not improve
the score, but instead slightly lowers the accuracy.

V. DISCUSSION

A. Singer-wise split

As a follow-up study for Experiment 1, we also tried singer-
wise split, and the results are shown in Table VIII. In this
split condition, the dataset was split into a training set from
15 singers and a test set 5 singers during the learning process.
The results suggest that STFT-based model also outperformed
the other models in the condition as well as clip-wise split.

B. Effectiveness of the proposed framework

In Experiment 1, we confirmed that STFT-based methods
performed well, particularly in classifying breathiness-related
singing techniques. In mel-filterbank-based representations,
the contrast between the harmonic components and other
noisy components becomes unclear, and the pitch contour
becomes ambiguous owing to the low resolution within the
frequency domain. Meanwhile, STFT-based representations
maintain a clear contrast between the spectral peaks and noisy
components, enabling the detection of noisy parts and a fine-
scale pitch modulation. We assume that this is the reason
why STFT-based representations outperformed the Mel-based
representations.

In Experiment 2, we demonstrated the effectiveness of the
CNN model with a convolution kernel with oblong shapes.
There are many potential combinations of convolutional kernel
shapes for each layer of a CNN. In fact, there are some cases
in which the performance is improved by changing the shape
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Fig. 3. Plot of class-wise F1 scores. Error bars show the standard error.

TABLE IV
CLASS-WISE F1-SCORES.(CLIP-WISE SPLIT)

Methods Belt Breathy Inhaled Lip trill Straight Trill Trillo Spoken Vibrato Vocal fry Overall
(macro average)

Hand-Crafted 0.674 0.568 0.346 0.798 0.716 0.378 0.440 0.290 0.760 0.648 0.669
MelSpec 0.664 0.604 0.510 0.884 0.746 0.652 0.628 0.478 0.826 0.682 0.728
Scattering 0.713 0.718 0.645 0.963 0.748 0.675 0.615 0.275 0.813 0.743 0.754
STFT 0.686 0.754 0.762 0.972 0.768 0.648 0.602 0.610 0.826 0.756 0.770
Multi-1 0.672 0.760 0.680 0.974 0.766 0.638 0.594 0.700 0.834 0.770 0.770
Multi-2 0.700 0.766 0.740 0.972 0.788 0.606 0.564 0.728 0.834 0.772 0.778
Wave 0.663 0.528 0.548 0.938 0.698 0.548 0.420 0.403 0.773 0.680 0.684

Fig. 4. Visualization of feature vector derived Multi-2 (left), STFT (center), and Hand-crafted (right).

Fig. 5. Accuracy and balanced accuracy of Experiment 2.

TABLE V
SHAPE OF CONVOLUTIONAL KERNEL UNDER EACH CONDITION. THE

FOUR CONVOLUTIONAL LAYERS ARE NUMBERED IN ASCENDING ORDER
(CONV 1 TO 4) FROM THE INPUT LAYER.

Conv 1 Conv 2 Conv 3 Conv 4
Square (3× 3) (3× 3) (3× 3) (3× 3)
Oblong (1× 4) (1× 16) (4× 1) (16× 1)

of the kernel [29] for automatic music tagging tasks. The shape
of the kernel needs to be further studied.
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TABLE VI
RESULTS OF EXPERIMENT 2.

Kernel shape Feature Balanced Accuracy

Square
Multi-2 0.624 0.733
STFT 0.589 0.696
MelSpec 0.636 0.728

Oblong
Multi-2 0.727 0.778
STFT 0.713 0.770
MelSpec 0.589 0.702

TABLE VII
ACCURACY METRICS WHEN THE DIMENSION SIZE OF THE FEATURE

VECTORS VARIES.

Dimension size Balanced Accuracy
22 0.727 0.778
44 0.713 0.770
88 0.711 0.771
200 0.716 0.773

TABLE VIII
RESULTS OF EXPERIMENT 1 UNDER THE CONDITION OF SINGER-SPLIT.

Methods Balanced Accuracy Top-2 Top-3
Hand-crafted 0.377 0.513 0.706 0.803
MelSpec 0.488 0.556 0.754 0.846
Scattering 0.422 0.439 0.644 0.776
STFT 0.597 0.606 0.803 0.891
Multi-1 0.605 0.617 0.799 0.898
Multi-2 0.535 0.553 0.730 0.843
Wave 0.511 0.581 0.761 0.876

In another direction, further investigation into feature learn-
ing methods such as recurrent neural networks (RNNs),
convolutional recurrent neural networks (CRNNs), or joint
time–frequency scattering [12] would be interesting.

Finally, the recordings in VocalSet are monophonic, unlike
many commercially distributed songs. To analyze popular
songs using the methods considered in this paper, a voice sep-
aration must be applied before the singing technique classifica-
tion is applied. Under such situations, singing technique classi-
fications may decrease the accuracy. Considering that VocalSet
is the only publicly available dataset that annotates singing
techniques, the development of another dataset that consists
of polyphonic signals (i.e., songs and accompaniments), with
annotation of the singing technique, can contribute to further
development of the field.

VI. CONCLUSION

This study provides an investigation into audio feature
representations for singing technique classification. We com-
pared hand-crafted features and CNN-based feature learning
methods applied to various time-frequency representations.
Our findings show that features learned from low-level repre-
sentations, such as spectrograms, outperformed hand-crafted
features based on expert knowledge. In particular, multi-
resolution spectrograms performed best, with an accuracy of
77.8% in clip-wise split and 61.7% in singer-wise split. Pre-
sumably, this is due to their high ability to capture breathiness
and a small modulation. We also confirmed the effectiveness of
the combination of an STFT-based input feature representation

and a CNN that convolves along the time and frequency
axes separately. Extending this approach, we plan to further
investigate the design of feature learning, e.g., changing the
convolution kernel shapes of a CNN, or applying different
DNN-based methods.
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