Navier-StokesÊýÄø¼°¤Ç¤Î°Üή¹à (u¡¦¢¦)u ¤Ë¤Ä¤¤¤Æ



°ÜήÊýÄø¼°

°ÜήÊýÄø¼°

¶õ´ÖÈùʬ¤ÎÎ¥»¶²½

É÷¾åº¹Ê¬(Upwind differencing)

°ÜήÊýÄø¼°¤Î»þ´ÖÈùʬ¤òÁ°¿Ê¥ª¥¤¥é¡¼Ë¡¤ÇÎ¥»¶²½¤¹¤ë¤È¡¤

upwind.eq1.gif

1¼¡¸µ¤Î¾ì¹ç¤ò¹Í¤¨¤ë¡¥¥°¥ê¥Ã¥Éupwind.eq2.gif(ºÂɸupwind.eq3.gif)¤Ë¤Ä¤¤¤Æ¡¤

upwind.eq4.gif

¤³¤³¤Ç¡¤upwind.eq5.gif¡¥¤³¤Îupwind.eq6.gif¤òº¹Ê¬¤ò»È¤Ã¤Æµá¤á¤ë¡¥

É÷¾åº¹Ê¬¤Ç¤Ï¤½¤Î̾¤ÎÄ̤ꡤÉ÷¾å¦¤ÎÃͤò»È¤Ã¤Æº¹Ê¬¤ò¹Ô¤¦1¼¡ÀºÅÙ¤ÎÎ¥»¶²½Ë¡¤Ç¤¢¤ë¡¥ 1¼¡¸µ¤Î¾ì¹ç¡¤upwind.eq7.gif¤Ç¤ÏºÂɸ¼´¾å¤Î±¦¤«¤éº¸¤ËÉ÷¤¬¿á¤¤¤Æ¤¤¤ë¤Î¤Ç¡¤É÷¾å¤Ïi+1¡¤ upwind.eq8.gif¤Ç¤Ïº¸¤«¤é±¦¤ËÉ÷¤¬¿á¤¤¤Æ¤¤¤ë¤Î¤Ç¡¤É÷¾å¤Ïi-1¤È¤Ê¤ë¡¥

upwind.eq9.gif

É÷¾åº¹Ê¬¤ÏCFL(Courant-Friedreichs-Lewy)¾ò·ï¤òËþ¤¿¤·¤Æ¤¤¤ì¤Ð°ÂÄê¤Ç¤¢¤ë¡¥ CFL¾ò·ï¤Ë¤è¤ë¥¿¥¤¥à¥¹¥Æ¥Ã¥×Éý¤ÎÀ©¸Â¤Ï¡¤

upwind.eq10.gif

¥¿¥¤¥à¥¹¥Æ¥Ã¥×Éý¤ÏÄ̾盧¤ì¤è¤ê¤â¤µ¤é¤Ë¾®¤µ¤¤¿ô¤òÍѤ¤¤¿Êý¤¬¤è¤¤¡¥ ·¸¿ô:CFL¿ô(CFL number)¤òupwind.eq11.gif¤È¤¹¤ë¤È¡¤

upwind.eq12.gif

¤³¤³¤Ç¡¤upwind.eq13.gif¡¥¤è¤¯»È¤ï¤ì¤ë¤Î¤Ïupwind.eq14.gif¤Ç¤¢¤ë¡¥

¿¶Æ°¤È¿ôÃͳȻ¶

É÷¾åº¹Ê¬¤ÎÎ¥»¶¼°(upwind.eq8.gif¤Î¾ì¹ç)¤ò°ÌÃÖupwind.eq3.gif¤Ç¥Æ¡¼¥é¡¼Å¸³«¤·¤Æ¤ß¤ë¡¥

upwind.eq15.gif

upwind.eq16.gif¤Ï¶õ´Ö2³¬Èùʬ¤Ç¤¢¤ê¡¤¤³¤ì¤Ï³È»¶¤òɽ¤·¤Æ¤¤¤ë¡¥ ³È»¶¤Ë´Ø¤¹¤ë¹à¤Ï¡¤Î㤨¤Ð¡¤Î®ÂΤΥʥӥ¨¡¦¥¹¥È¡¼¥¯¥¹ÊýÄø¼°¤Ë¤â¤¢¤ë(upwind.eq17.gif)¡¥ ¤·¤«¤·¡¤¤³¤ì¤Ï¤½¤ì¤é¤Î¹à¤È¤Ï°Û¤Ê¤ê¡¤Î¥»¶²½¤Ë¤è¤Ã¤ÆÀ¸¤Þ¤ì¤¿³È»¶¤Ç¤¢¤ê¡¤¤³¤ì¤ò¿ôÃͳȻ¶(numerical diffusion)¤È¸Æ¤Ö¡¥ ²¼¤Î¶ë·ÁÇȤΰÜή¤ò¸«¤ë¤ÈÉ÷¾åº¹Ê¬¤Ë¤ª¤¤¤Æ¿ôÃͳȻ¶¤¬È¯À¸¤·¤Æ¤¤¤ë¤Î¤¬¤è¤¯Ê¬¤«¤ë¡¥

¤µ¤Æ¡¤¾å¼°¤ÎÈùʬ¤ò²¼¤Ç½Ò¤Ù¤ëÃæ¿´º¹Ê¬¤ÇÎ¥»¶²½¤·¤Æ¤ß¤ë¡¥

upwind.eq18.gif

É÷¾åº¹Ê¬¤ÏÃæ¿´º¹Ê¬¤Ë³È»¶¹à¤ò²Ã¤¨¤¿¤â¤Î¤Ç¤¢¤ë¤³¤È¤¬Ê¬¤«¤ë¡¥ Ãæ¿´º¹Ê¬¤Ç¤ÏÈó¾ï¤ËÂ礭¤Ê¿¶Æ°¤¬È¯À¸¤¹¤ë¡¥ ¤½¤Î¿¶Æ°¤ò³È»¶¹à¤Ë¤è¤êÍÞ¤¨¤Æ¤¤¤ë¤Î¤¬É÷¾åº¹Ê¬¤Ç¤¢¤ë¡¥ ¤³¤Î¿¶Æ°¤òÍÞ¤¨¤ë¤È¤¤¤¦¹Í¤¨Êý¤Ï½ÅÍפǤ¢¤ë¡¥ ¤è¤ê¹â¼¡¤Î´Ø¿ô¤ò»È¤Ã¤ÆÊä´Ö¤¹¤ë¤³¤È¤Ç¿¶Æ°¤òÍÞ¤¨¤ë¤Î¤¬¡¤Lax-Wendroff¤äQUICK,QUICKEST,²Ï¼¡¦·¬¸¶¥¹¥­¡¼¥à¤Ê¤É¤Ç¡¤ 2³¬¡¤3³¬¤ÎÈùʬ¤ò»È¤Ã¤ÆÍÞ¤¨¤ë¤Î¤¬ENO¤äWENO¤Ç¤¢¤ë¡¥ ¤³¤ì¤é¤ËÂФ·¤Æ¡¤¸µ¤Î·Á¾õ¤òÊÝ»ý¤¹¤ë¤È¤¤¤¦¹Í¤¨Êý¤Ë´ð¤Å¤­¡¤°Û¤Ê¤ë¥¢¥×¥í¡¼¥Á¤ò¤È¤ë¤Î¤¬CIPË¡,RCIPË¡¤Ê¤É¤Ç¤¢¤ë¡¥ ¤Á¤Ê¤ß¤ËRCIPË¡¤Ç¤Ï¿ôÃͳȻ¶¤¬È¯À¸¤·¤Æ¤·¤Þ¤¦¤Î¤Ç¡¤¤³¤ì¤òÍÞ¤¨¤ë¤¿¤á¤ÎSTAA¼êË¡¤Ç¤ÏµÕ¤Ë¿ôÃͳȻ¶¹à¤ò°ú¤¯¤³¤È¤Ç³È»¶¤òÍÞ¤¨¤Æ¤¤¤ë¡¥

  • Îã¡§¶ë·ÁÇȤΰÜή

    ¶ë·ÁÇÈ(0.25 < x < 0.75¤Ç1¡¤¤½¤ì°Ê³°¤Ç0)¤ò°ìÄê®ÅÙ(u=0.75)¤Ç°Üή¤µ¤»¤¿·ë²Ì¤ò¼¨¤¹¡¥¥°¥ê¥Ã¥É²òÁüÅÙN=128, ¥·¥ß¥å¥ì¡¼¥·¥ç¥ó¶õ´Ö¤ÎÂ礭¤µL=5.0¡¤¥°¥ê¥Ã¥ÉÉý¦¤x=L/N¡¤¥¿¥¤¥à¥¹¥Æ¥Ã¥×Éý¦¤t=0.1*¦¤x/u¤È¤·¤¿¡¥³¥¿§¤ÎºÙ¤¤Àþ¤Ï1É䴤ȤÎÍúÎò¤ò¼¨¤·¤Æ¤¤¤ë¡¥

    É÷¾åº¹Ê¬¤Ç¤Ï²¼¤ÎÃæ¿´º¹Ê¬¤Î¤è¤¦¤Ë¿¶Æ°¤¬Á´¤¯¤Ê¤¤Âå¤ï¤ê¤Ë¡¤·Á¾õ¤¬¤Ê¤Þ¤Ã¤Æ¤¤¤ë¡¥ ¤³¤ì¤Ï¿ôÃͳȻ¶¤È¸Æ¤Ð¤ì¤ë¸½¾Ý¤Ë¤è¤ë¤¿¤á¤Ç¤¢¤ë¡¥
    rectan_upwind.jpg
    ¶ë·ÁÇȤÎÉ÷¾åº¹Ê¬¤Ë¤è¤ë°Üή

Ãæ¿´º¹Ê¬(Central differencing)

ή¤ì¤Î®ÅÙcentral.eq1.gif¤Ë´Ø·¸¤Ê¤¯¡¤¥°¥ê¥Ã¥ÉÅÀ¤òÃæ¿´¤È¤·¤¿¼þ°Ï¤Î¥°¥ê¥Ã¥É¤ÎÃͤÎÊ¿¶Ñ¤Ç¶õ´ÖÈùʬ¤ò¶á»÷¤¹¤ë¤Î¤¬Ãæ¿´º¹Ê¬¤Ç¤¢¤ë¡¥ ¤Ä¤Þ¤ê¡¤1¼¡¸µ¤Î¾ì¹ç¡¤°Ê²¼¤È¤Ê¤ë¡¥

central.eq2.gif

Á°¿Ê¥ª¥¤¥é¡¼Ë¡¤ÈÁȤ߹ç¤ï¤»¤ë¤È¡¤

central.eq3.gif
  • Îã¡§¶ë·ÁÇȤΰÜή

    ¶ë·ÁÇÈ(0.25 < x < 0.75¤Ç1¡¤¤½¤ì°Ê³°¤Ç0)¤ò°ìÄê®ÅÙ(u=0.75)¤Ç°Üή¤µ¤»¤¿·ë²Ì¤ò¼¨¤¹¡¥¥°¥ê¥Ã¥É²òÁüÅÙN=128, ¥·¥ß¥å¥ì¡¼¥·¥ç¥ó¶õ´Ö¤ÎÂ礭¤µL=5.0¡¤¥°¥ê¥Ã¥ÉÉý¦¤x=L/N¡¤¥¿¥¤¥à¥¹¥Æ¥Ã¥×Éý¦¤t=0.1*¦¤x/u¤È¤·¤¿¡¥³¥¿§¤ÎºÙ¤¤Àþ¤Ï1É䴤ȤÎÍúÎò¤ò¼¨¤·¤Æ¤¤¤ë¡¥

    É÷¾åº¹Ê¬¤Ç¤Ït=5¤Þ¤Ç°Üή¤µ¤»¤¿·ë²Ì¤Î¤ß¼¨¤·¤¿¤¬¡¤Ãæ¿´º¹Ê¬¤Ç¤ÏÈó¾ï¤Ë¿¶Æ°¤¬Â礭¤¯¤Ê¤ë¤¿¤á¡¤ t=0.5, 1.0, 5.0¤Î3¤Ä¤Î¥°¥é¥Õ¤ò¼¨¤·¤¿¡¥Î®¤ì¤Î¸åÊý¤Ë¿¤¯¤Î¿¶Æ°¤¬¸½¤ìÀ®Ä¹¤·¤Æ¤¤¤¯ÍͻҤ¬Ê¬¤«¤ë¡¥
    rectan_central1.jpg
    ¶ë·ÁÇȤÎÃæ¿´º¹Ê¬¤Ë¤è¤ë°Üή(t=0.5)
    rectan_central2.jpg
    ¶ë·ÁÇȤÎÃæ¿´º¹Ê¬¤Ë¤è¤ë°Üή(t=1.0)
    rectan_central3.jpg
    ¶ë·ÁÇȤÎÃæ¿´º¹Ê¬¤Ë¤è¤ë°Üή(t=5.0)

Lax-Wendroffˡ

Lax-WendroffË¡(¤Þ¤¿¤Ï¡¤¥é¥¤¥¹(Leith)Ë¡)*3¤Ç¤ÏÀþ·ÁÊä´Ö¤ÎÂå¤ï¤ê¤Ë2¼¡Â¿¹à¼°¤ò»È¤Ã¤¿Êä´Ö¤Ç¶á»÷¤ò¹Ô¤¦¡¥2¼¡Â¿¹à¼°¤Î·¸¿ô¤òµá¤á¤ë¤¿¤á¤Ë¡¤¥°¥ê¥Ã¥Éi¤È¤½¤ÎξÎÙ(i-1,i+1)¤Î3¤Ä¤ÎÃÍLax-Wendroff.eq1.gif¤òÍѤ¤¤ë¡¥

2¼¡Â¿¹à¼°¤Ï¡¤

Lax-Wendroff.eq2.gif

¤³¤³¤Ç³Æ·¸¿ô¤Ï¡¤

Lax-Wendroff.eq3.gif

Lax-Wendroff.eq4.gif¤È¤¹¤ë¤È°ÜήÊýÄø¼°¤Î¶á»÷¹¹¿·¼°¤¬ÆÀ¤é¤ì¤ë¡¥

Lax-Wendroff.eq5.gif

É÷¾åº¹Ê¬¤ÈƱÍͤËÃæ¿´º¹Ê¬¤Ë³È»¶¹à¤ò²Ã¤¨¤¿¤â¤Î¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡¥³È»¶¹à¤Î·¸¿ô¤¬°Û¤Ê¤ë¤Î¤¬É÷¾åº¹Ê¬¤È¤Î°ã¤¤¤Ç¤¢¤ë¡¥

  • Îã¡§¶ë·ÁÇȤΰÜή

    ¶ë·ÁÇÈ(0.25 < x < 0.75¤Ç1¡¤¤½¤ì°Ê³°¤Ç0)¤ò°ìÄê®ÅÙ(u=0.75)¤Ç°Üή¤µ¤»¤¿·ë²Ì¤ò¼¨¤¹¡¥¥°¥ê¥Ã¥É²òÁüÅÙN=128, ¥·¥ß¥å¥ì¡¼¥·¥ç¥ó¶õ´Ö¤ÎÂ礭¤µL=5.0¡¤¥°¥ê¥Ã¥ÉÉý¦¤x=L/N¡¤¥¿¥¤¥à¥¹¥Æ¥Ã¥×Éý¦¤t=0.1*¦¤x/u¤È¤·¤¿¡¥³¥¿§¤ÎºÙ¤¤Àþ¤Ï1É䴤ȤÎÍúÎò¤ò¼¨¤·¤Æ¤¤¤ë¡¥

    rectan_lax-wendroff.jpg
    ¶ë·ÁÇȤÎLax-WendroffË¡¤Ë¤è¤ë°Üή

QUICK(Quadratic Upstream Interpolation for Convective Kinematics)

QUICK*4¤Ïquick.eq1.gif¤ÎÆâÁÞ¤Ëquick.eq2.gif¤Èquick.eq3.gif¤Ë²Ã¤¨¤Æ¡¤É÷¾å¦¤Î¤â¤¦°ì¤Ä¤Îquick.eq4.gif¤òÍѤ¤¤ëÊýË¡¤Ç¤¢¤ë¡¥

quick.eq5.gif

¤³¤ì¤ò°ÜήÊýÄø¼°¤ÎÎ¥»¶²½¤ËÍѤ¤¤ë¤È¡¤

quick.eq6.gif
  • Îã¡§¶ë·ÁÇȤΰÜή

    ¶ë·ÁÇÈ(0.25 < x < 0.75¤Ç1¡¤¤½¤ì°Ê³°¤Ç0)¤ò°ìÄê®ÅÙ(u=0.75)¤Ç°Üή¤µ¤»¤¿·ë²Ì¤ò¼¨¤¹¡¥¥°¥ê¥Ã¥É²òÁüÅÙN=128, ¥·¥ß¥å¥ì¡¼¥·¥ç¥ó¶õ´Ö¤ÎÂ礭¤µL=5.0¡¤¥°¥ê¥Ã¥ÉÉý¦¤x=L/N¡¤¥¿¥¤¥à¥¹¥Æ¥Ã¥×Éý¦¤t=0.1*¦¤x/u¤È¤·¤¿¡¥³¥¿§¤ÎºÙ¤¤Àþ¤Ï1É䴤ȤÎÍúÎò¤ò¼¨¤·¤Æ¤¤¤ë¡¥

    rectan_quick.jpg
    ¶ë·ÁÇȤÎQUICK¤Ë¤è¤ë°Üή

QUICKEST(QUICK with estimated streaming terms)

QUICKEST(QUICK with estimated streaming terms)¤ÏLax-Wendroff¤Î3¤Ä(quickest.eq1.gif,quickest.eq2.gif,quickest.eq3.gif)¤Ë²Ã¤¨¤Æ¡¤QUICK¤ÈƱÍͤËÉ÷¾å¦¤Î¤â¤¦°ì¤Ä¤Îquickest.eq4.gif¤òÄɲ䷤ƶá»÷¤¹¤ë¼êË¡¤Ç¤¢¤ë(quickest.eq5.gif¤Ê¤éi-2¡¤quickest.eq6.gif¤Ê¤éi+2)¡¥

quickest.eq7.gif
  • Îã¡§¶ë·ÁÇȤΰÜή

    ¶ë·ÁÇÈ(0.25 < x < 0.75¤Ç1¡¤¤½¤ì°Ê³°¤Ç0)¤ò°ìÄê®ÅÙ(u=0.75)¤Ç°Üή¤µ¤»¤¿·ë²Ì¤ò¼¨¤¹¡¥¥°¥ê¥Ã¥É²òÁüÅÙN=128, ¥·¥ß¥å¥ì¡¼¥·¥ç¥ó¶õ´Ö¤ÎÂ礭¤µL=5.0¡¤¥°¥ê¥Ã¥ÉÉý¦¤x=L/N¡¤¥¿¥¤¥à¥¹¥Æ¥Ã¥×Éý¦¤t=0.1*¦¤x/u¤È¤·¤¿¡¥³¥¿§¤ÎºÙ¤¤Àþ¤Ï1É䴤ȤÎÍúÎò¤ò¼¨¤·¤Æ¤¤¤ë¡¥

    rectan_quickest.jpg
    ¶ë·ÁÇȤÎQUICKEST¤Ë¤è¤ë°Üή

²Ï¼¡¦·¬¸¶¥¹¥­¡¼¥à(Kawamura-Kuwabara scheme)

4¼¡ÀºÅÙ¤ÎÃæ¿´º¹Ê¬(kk.eq1.gif¤ò»ÈÍÑ)¤Ë ³È»¶¹à¤È¤·¤Æ4³¬Èùʬ¹à¤òÄɲä·¤¿¤Î¤¬¡¤²Ï¼¡¦·¬¸¶¥¹¥­¡¼¥à*5¤Ç¤¢¤ë¡¥ ¤³¤ì¤Ë¤è¤ê3¼¡ÀºÅÙ¤ÎÉ÷¾åº¹Ê¬¤òÆÀ¤ë(1¼¡¤ÎÉ÷¾åº¹Ê¬¤Ï2¼¡Ãæ¿´º¹Ê¬+2³¬Èùʬ¹à)¡¥

4¼¡ÀºÅÙ¤ÎÃæ¿´º¹Ê¬¤Ï°Ê²¼¡¥

kk.eq2.gif

4³¬Èùʬ¹à¤Îº¹Ê¬¼°¤Ï¡¤

kk.eq3.gif

(4³¬Èùʬ¤Îº¹Ê¬¼°¤ÎƳ½Ð¤Ï4³¬Èùʬ¤ò»²¾È)¡¥

4³¬Èùʬ¹à¤Ë·¸¿ôkk.eq4.gif¤ò³Ý¤±¤¿¾å¤ÇÀè¤Û¤É¤Î¼°¤ËÄɲ乤롥

kk.eq5.gif

kk.eq6.gif¤Î¾ì¹ç¡¤

kk.eq7.gif
  • Îã¡§¶ë·ÁÇȤΰÜή

    ¶ë·ÁÇÈ(0.25 < x < 0.75¤Ç1¡¤¤½¤ì°Ê³°¤Ç0)¤ò°ìÄê®ÅÙ(u=0.75)¤Ç°Üή¤µ¤»¤¿·ë²Ì¤ò¼¨¤¹¡¥¥°¥ê¥Ã¥É²òÁüÅÙN=128, ¥·¥ß¥å¥ì¡¼¥·¥ç¥ó¶õ´Ö¤ÎÂ礭¤µL=5.0¡¤¥°¥ê¥Ã¥ÉÉý¦¤x=L/N¡¤¥¿¥¤¥à¥¹¥Æ¥Ã¥×Éý¦¤t=0.1*¦¤x/u¤È¤·¤¿¡¥³¥¿§¤ÎºÙ¤¤Àþ¤Ï1É䴤ȤÎÍúÎò¤ò¼¨¤·¤Æ¤¤¤ë¡¥

    rectan_kk.jpg
    ¶ë·ÁÇȤβϼ¡¦·¬¸¶¥¹¥­¡¼¥à¤Ë¤è¤ë°Üή

ENO(Essentially Non-Oscillatory polynomial interpolation)

ENO(Essentially Non-Oscillatory polynomial interpolation)¤ÏÉ÷¾åº¹Ê¬¤ò²þÎɤ·¡¤ 3¼¡Â¿¹à¼°¤Î·Á¤Ç¶á»÷¤¹¤ë¤³¤È¤Ç3¼¡ÀºÅÙ¤ò¼Â¸½¤·¤¿ÊýË¡¤Ç¤¢¤ë¡¥ ENO¤ÎºÇ½é¤Î¥¢¥¤¥Ç¥¢¤Ï *6 ¤ÇÄ󰯤µ¤ì¡¤ *7, *8 ¤Ç¿ôÃÍ·×»»¤ËŬÍѤµ¤ì¡¤ *9 ¤ÇHamilton-Jacobi(HJ)ÊýÄø¼°¤ØÅ¬ÍѤµ¤ì¤¿(HJ ENO)¡¥ °ÜήÊýÄø¼°¤ÏHJÊýÄø¼°¤Ç¤¢¤ë¤Î¤Ç¡¤¤³¤³¤«¤é¤Ï¡¤HJ ENO¤Ë¤Ä¤¤¤ÆÀâÌÀ¤¹¤ë¡¥

HJ ENO¤Î¼°¤ò½Ò¤Ù¤ëÁ°¤Ë¡¤½àÈ÷¤È¤·¤Æº¹Ê¬¼°¤òÄêµÁ¤·¤Æ¤ª¤¯¡¥ eqa_phii.gif¤În³¬º¹Ê¬¤òeqa_Dinphi.gif¤Èɽµ­¤¹¤ë¡¥¤È¤¹¤ë¤È¡¤n=0¤Ï¡¤

eqa_eno1.gif

¤È¤Ê¤ë¡¥¤³¤³¤Ç¡¤i¤Ï¥°¥ê¥Ã¥ÉÈÖ¹æ(ºÂɸÃÍeqa_xi.gif)¡¥

1³¬º¹Ê¬¤Ï¥°¥ê¥Ã¥É´Ö(i-1/2¤Èi+1/2)¤ÇÄêµÁ¤µ¤ì¤ë¡¥

eqa_eno2.gif
eqa_eno3.gif

2³¬º¹Ê¬¤Ïi-1/2¤Èi+1/2¤Ç¤Î1³¬º¹Ê¬Ãͤò»È¤Ã¤Æ¡¤i¤ÇÄêµÁ¤µ¤ì¤ë¡¥

eqa_eno4.gif

ƱÍͤË3³¬º¹Ê¬¤Ï¡¤

eqa_eno5.gif
eqa_eno6.gif

ENO¤Ç¤Ï3¼¡Â¿¹à¼°¤Ë¤è¤êeqa_phi.gif¤ò¶á»÷¤¹¤ë¡¥

eqa_eno7.gif

¤³¤³¤Ç¡¤eqa_Qm.gif¤Ïm¼¡¹à¤Ç¤¢¤ë¡¥ eqa_phix+i.gif, eqa_phix-i.gif¤Î¼°¤¬¤Û¤·¤¤¤Î¤Ç¡¤ ¾å¼°¤òÈùʬ¤·¤Æ¡¤x=eqa_xi.gif¤È¤¹¤ë¤È¡¤

eqa_eno8.gif
  • 1¼¡¹àeqa_Q1d.gif
    eqa_phix-.gif¤Î¾ì¹çk=i-1¡¤eqa_phix+.gif¤Çk=i¤È¤¹¤ë¤È¡¤
    eqa_eno9.gif
    eqa_eno10.gif
    eqa_Q1d.gif¤Î¤ß¤Î¾ì¹ç¤¬É÷¾åº¹Ê¬¤ËÁêÅö¤¹¤ë¡¥¤³¤ì¤Ë¡¤2¼¡¹à¡¤3¼¡¹à¤ò²Ã¤¨¤ë¤³¤È¤Ç¡¤3¼¡ÀºÅÙ¤òÆÀ¤ë¡¥
  • 2¼¡¹àeqa_Q2d.gif
    eqa_eno11.gif
    eqa_eno12.gif
    ¤³¤³¤Ç¡¤
    eqa_eno13.gif
  • 3¼¡¹àeqa_Q3d.gif
    eqa_eno14.gif
    eqa_eno15.gif
    ¤³¤³¤Ç¡¤
    eqa_eno16.gif
    eqa_eno17.gif

¤³¤ì¤é¤Ë¤è¤Ã¤Æ¡¤eqa_phixxi.gif¤òµá¤á¡¤

eqa_eno18.gif

¤Ë¤è¤êeqa_phi.gif¤ò¹¹¿·¤¹¤ë¡¥

  • Îã¡§¶ë·ÁÇȤΰÜή

    ¶ë·ÁÇÈ(0.25 < x < 0.75¤Ç1¡¤¤½¤ì°Ê³°¤Ç0)¤ò°ìÄê®ÅÙ(u=0.75)¤Ç°Üή¤µ¤»¤¿·ë²Ì¤ò¼¨¤¹¡¥¥°¥ê¥Ã¥É²òÁüÅÙN=128, ¥·¥ß¥å¥ì¡¼¥·¥ç¥ó¶õ´Ö¤ÎÂ礭¤µL=5.0¡¤¥°¥ê¥Ã¥ÉÉý¦¤x=L/N¡¤¥¿¥¤¥à¥¹¥Æ¥Ã¥×Éý¦¤t=0.1*¦¤x/u¤È¤·¤¿¡¥³¥¿§¤ÎºÙ¤¤Àþ¤Ï1É䴤ȤÎÍúÎò¤ò¼¨¤·¤Æ¤¤¤ë¡¥

    rectan_eno.jpg
    ¶ë·ÁÇȤÎENO¤Ë¤è¤ë°Üή

WENO(Weighted Essentially Non-Oscillatory polynomial interpolation)

ENO¤ò²þÎɤ·¤Æ¡¤½Å¤ßÉÕ¤­Ê¿¶Ñ¤ò¤È¤ë¤³¤È¤Ç5¼¡ÀºÅÙ¤ò¼Â¸½¤·¤¿¤Î¤¬WENO¤Ç¤¢¤ë¡¥

3¼¡ÀºÅÙ¤ÎENO¤Ç¤Ïeqa_phix-i.gif¤Ë¤Ä¤¤¤Æ¡¤ eqa_weno1.gif¤Î6¤Ä¤ÎÆâ¡¤4¤Ä¤ÎÃͤòÍѤ¤¤ÆÊä´Ö¤ò¹Ô¤¦¡¥ ¤½¤·¤Æ¡¤¤½¤ÎÁȤ߹ç¤ï¤»¤Ï3¥Ñ¥¿¡¼¥ó (eqa_weno2.gif¤Èeqa_weno3.gif¤Èeqa_weno4.gif)¤Ç¤¢¤ë¡¥ ¼ÂºÝ¤ËŸ³«¤·¤Æ¤ß¤È°Ê²¼¤È¤Ê¤ë(eqa_phix-.gif¤Ç¤Ï¡¤k=i-1)¡¥

eqa_weno5.gif

1+2+4, 1+2+5, 1+3+6, 1+3+7¤Î4¥Ñ¥¿¡¼¥ó¤Ë¤Ê¤ë¤¬¡¤ °Ê²¼¤Ë¼¨¤¹¤è¤¦¤Ë1+2+5¤È1+3+6¤¬Æ±¤¸¤Ê¤Î¤Ç¡¤ÁȤ߹ç¤ï¤»¤Ï3¥Ñ¥¿¡¼¥ó¤Ë¤Ê¤ë¡¥ ¤½¤ì¤¾¤ì¤µ¤é¤ËŸ³«¤·¤Æ¦Õi¤Î¼°¤Ë¤¹¤ë¡¥

eqa_weno6.gif

º¹Ê¬¤òeqa_weno7.gif¤Èɽµ­¤¹¤ë¤È¾åµ­3¥Ñ¥¿¡¼¥ó¤Ï¡¤

eqa_weno8.gif

ENO¶á»÷¤Ï·ë¶É¤³¤Î3¤Ä¤Î¥Ñ¥¿¡¼¥ó¤Ë½¸Ì󤵤ì¤ë¡¥ ¤³¤ì¤é¤ÎÆâ¤É¤ì¤«¤¬¾õ¶·¤Ë±þ¤¸¤ÆÍѤ¤¤é¤ì¤ë¡¥ WENO(Weighted ENO)¤Ï¤½¤Î̾¤ÎÄ̤ꡤ¤³¤ì¤é3¤Ä¤ÎÆÌ·ë¹ç *10 ¤Çeqa_phix.gif¤ò¶á»÷¤¹¤ë *11¡¥ ¤Ä¤Þ¤ê¡¤

eqa_weno12.gif

¤³¤³¤Ç¡¤eqa_weno13.gif¡¥

ÌäÂê¤È¤Ê¤ë¤Î¤Ïeqa_weno14.gif¤ÎÁªÂò¤Ç¤¢¤ë¡¥ ´Ø¿ô¤¬³ê¤é¤«¤Ê¤é¤Ð¡¤eqa_weno15.gif¤Ç5¼¡ÀºÅÙ¤¬ÆÀ¤é¤ì¤ë *12¡¥ ¤¿¤À¤·¡¤¶ë·ÁÇȤΤ褦¤Ë³ê¤é¤«¤Ç¤Ê¤¤´Ø¿ô¤À¤È¤È¤¿¤ó¤ËÉÔ°ÂÄê¤Ë¤Ê¤ë¡¥ *13¤Ç¤Ï³ê¤é¤«¤Ç¤Ê¤¤´Ø¿ô¤Ç¤â°ÂÄê¤Ê½Å¤ß¤Î·×»»Ë¡¤òÄ󰯤·¤Æ¤¤¤ë¡¥¤½¤ÎÊýË¡¤ò°Ê²¼¤Ë¼¨¤¹¡¥

eqa_phix.gif¤Î³ê¤é¤«¤µ(smoothness)¤ò°Ê²¼¤Î¤è¤¦¤ËÄêµÁ¤¹¤ë¡¥

eqa_weno16.gif

Àè¤Û¤É¤Î½Å¤ß¤ÎÁȤ߹ç¤ï¤»(eqa_weno17.gif)¤òsmoothness¤Î2¾è¤Ç³ä¤ë¤³¤È¤Ç½Å¤ß¤òÆÀ¤ë¡¥

eqa_weno18.gif

¤³¤³¤Ç¡¤

eqa_weno19.gif

eqa_weno20.gif¤Ï¥¼¥í³ä¤òËɤ°¤¿¤á¤Î¹à¤Ç¤¢¤ë¡¥ eqa_weno21.gif¤Ïeqa_phi.gif¤¬É乿ÉÕµ÷Î¥¾ì¤Ç¤¢¤ë¤³¤È¤¬Á°Äó¤ÇÀßÄꤵ¤ì¤Æ¤¤¤ë¡¥ ¤Ä¤Þ¤ê¡¤eqa_phix.gif¤¬¤Û¤Ü1¤Ç¤¢¤ê¡¤eqa_weno22.gif¤Î¾ì¹ç¤Ç¤¢¤ë¡¥ ºÇ½ªÅª¤Ëeqa_weno23.gif¤òËþ¤¿¤¹¤¿¤á¤Ë¡¤Àµµ¬²½¤ò¹Ô¤¦¡¥

eqa_weno24.gif

¤³¤ì¤é¤«¤é¡¤

eqa_weno25.gif

¤Ë¤è¤êeqa_phi.gif¤ò¹¹¿·¤¹¤ë¤³¤È¤Ç5¼¡ÀºÅ٤ηë²Ì¤¬ÆÀ¤é¤ì¤ë¡¥

  • Îã¡§¶ë·ÁÇȤΰÜή

    ¶ë·ÁÇÈ(0.25 < x < 0.75¤Ç1¡¤¤½¤ì°Ê³°¤Ç0)¤ò°ìÄê®ÅÙ(u=0.75)¤Ç°Üή¤µ¤»¤¿·ë²Ì¤ò¼¨¤¹¡¥¥°¥ê¥Ã¥É²òÁüÅÙN=128, ¥·¥ß¥å¥ì¡¼¥·¥ç¥ó¶õ´Ö¤ÎÂ礭¤µL=5.0¡¤¥°¥ê¥Ã¥ÉÉý¦¤x=L/N¡¤¥¿¥¤¥à¥¹¥Æ¥Ã¥×Éý¦¤t=0.1*¦¤x/u¤È¤·¤¿¡¥³¥¿§¤ÎºÙ¤¤Àþ¤Ï1É䴤ȤÎÍúÎò¤ò¼¨¤·¤Æ¤¤¤ë¡¥

    rectan_weno.jpg
    ¶ë·ÁÇȤÎWENO¤Ë¤è¤ë°Üή

¥»¥ß¥é¥°¥é¥ó¥¸¥å(semi-Lagrangian)Ë¡

CGʬÌî¤Ç¤â¤â¤Ã¤È¤â¥Ý¥Ô¥å¥é¡¼¤ÊÊýË¡¡¥²¼¿Þ¤Î¤è¤¦¤Ë·×»»ÅÀx¤«¤é-uÊý¸þ¤Ë¦¤t¤À¤±¥Ð¥Ã¥¯¥È¥ì¡¼¥¹¤·¤Æ¡¤¤½¤Î°ÌÃ֤ǤήÅÙ¾ìu(x_bt, t)¤ò¼¡¤Î¥¹¥Æ¥Ã¥×¤Î®ÅÙ¾ìu(x, t+¦¤t)¤È¤¹¤ëÊýË¡¡¥²¼¿Þ¤Ç¤Ï¥Ð¥Ã¥¯¥È¥ì¡¼¥¹¤Ë1¼¡´Ø¿ô¤òÍѤ¤¤Æ¤¤¤ë¡¥ ¤³¤ÎÊýË¡¤ÏÂ礭¤Ê¥¿¥¤¥à¥¹¥Æ¥Ã¥×Éý¤Ç¤â°ÂÄꤷ¤Æ·×»»¤Ç¤­¤ë¤Î¤¬Â礭¤ÊÆÃħ¤Ç¤¢¤ë¡¥

back_trace.jpg

¥»¥ß¥é¥°¥é¥ó¥¸¥åË¡¤Ç¤Ï¥Ð¥Ã¥¯¥È¥ì¡¼¥¹¤·¤¿°ÌÃ֤ǤÎÃͤò¼þ°Ï¤ÎÃͤò»È¤Ã¤ÆÊä´Ö¤·¤Ê¤±¤ì¤Ð¤Ê¤é¤Ê¤¤¡¥ °ìÈÖ´Êñ¤Ê¤Î¤ÏÀþ·ÁÊä´Ö¤òÍѤ¤¤ëÊýË¡¤Ç¤¢¤ë¡¥¤¿¤À¤·Àþ·ÁÊä´Ö¤Ï1¼¡ÀºÅ٤Ǥ¢¤ê¡¤¾åµ­¤ÎÉ÷¾åº¹Ê¬¤ÈƱ¤¸¤°¤é¤¤³È»¶¤¬È¯À¸¤¹¤ë¡¥ ¤è¤ê¹âÀºÅÙ¤ÊÊä´ÖË¡¤òÍѤ¤¤ë¤³¤È¤Ç³È»¶¤òÍÞ¤¨¤ë¤³¤È¤¬¤Ç¤­¤ë¡¥Î㤨¤Ð¡¤¾åµ­¤ÎENO¤äWENO¡¤²¼µ­¤Ç¼¨¤¹ÊýË¡¤Ê¤É¤Ç¤¢¤ë¡¥

  • Îã¡§¶ë·ÁÇȤΰÜή

    ¶ë·ÁÇÈ(0.25 < x < 0.75¤Ç1¡¤¤½¤ì°Ê³°¤Ç0)¤ò°ìÄê®ÅÙ(u=0.75)¤Ç°Üή¤µ¤»¤¿·ë²Ì¤ò¼¨¤¹¡¥¥°¥ê¥Ã¥É²òÁüÅÙN=128, ¥·¥ß¥å¥ì¡¼¥·¥ç¥ó¶õ´Ö¤ÎÂ礭¤µL=5.0¡¤¥°¥ê¥Ã¥ÉÉý¦¤x=L/N¡¤¥¿¥¤¥à¥¹¥Æ¥Ã¥×Éý¦¤t=0.1*¦¤x/u¤È¤·¤¿¡¥³¥¿§¤ÎºÙ¤¤Àþ¤Ï1É䴤ȤÎÍúÎò¤ò¼¨¤·¤Æ¤¤¤ë¡¥

    rectan_sl.jpg
    ¶ë·ÁÇȤΥ»¥ß¥é¥°¥é¥ó¥¸¥åË¡(Àþ·ÁÊä´Ö)¤Ë¤è¤ë°Üή

BFECC(Back and Forth Error Compensation and Correction)

BFECC¤ÏSemi-LagrangianË¡¤Ë¤ª¤¤¤Æ¥Ð¥Ã¥¯¥È¥ì¡¼¥¹¤¹¤ëºÝ¤Ë¡¤¥Õ¥©¥ï¡¼¥É¥È¥ì¡¼¥¹¤Ë¤è¤ê¸íº¹¤òµá¤á¡¤ ¤½¤Î¸íº¹¤ò½¤Àµ¤¹¤ë¤³¤È¤Ç¹âÀºÅ٤˰Üή¤ò¹Ô¤¦ÊýË¡¤Ç¤¢¤ë¡¥ BFECC¤ÎºÇ½é¤Î¥¢¥¤¥Ç¥¢¤Ï *14 ¤ÇÄ󰯤µ¤ì¡¤ 2005ǯ¤ËCGʬÌî¤Ç°ÜήÊýÄø¼°¤ØÅ¬ÍѤµ¤ì¤¿ *15, *16¡¥

Semi-LagrangianË¡¤Î¥Ð¥Ã¥¯¥È¥ì¡¼¥¹¤Ë¤è¤ëeqa_phi.gif¤Î¹¹¿·¤ò°Ê²¼¤Î¼°¤Çɽ¤¹¡¥

eqa_bfecc1.gif

L¤ÏľÀþ¤ò»È¤Ã¤¿1¼¡ÀºÅ٤ΥХ寥ȥ졼¥¹¡¤u¤Ï®ÅÙ¾ì¤òɽ¤¹¡¥
BFECC¤Î¾ì¹ç¡¤¾å¼°¤Ï°Ê²¼¤Î¤è¤¦¤Ë¤Ê¤ë¡¥

eqa_bfecc2.gif

¤³¤³¤Ç¡¤

eqa_bfecc3.gif


  • BFECC¤Î¹Í¤¨Êý

BFECC¤Î¼°¤ò¾å¤Î¿Þ¤ò»È¤Ã¤ÆÀâÌÀ¤¹¤ë¡¥
¤Þ¤º¡¤AÅÀ¤ò·×»»ÅÀx¤È¤¹¤ë¡¥ ¤â¤·¡¤ÆÃħ¶ÊÀþ¤Ë´°àú¤Ë±è¤Ã¤Æ¥Ð¥Ã¥¯¥È¥ì¡¼¥¹¤·¤¿¤Ê¤é¤Ð¡¤¥Ð¥Ã¥¯¥È¥ì¡¼¥¹ÅÀ¤ÏB¤Ë¤Ê¤ë¤Ï¤º¤Ç¤¢¤ë¡¥ ¤À¤¬¡¤¼ÂºÝ¤Ë¤ÏľÀþ¤Ç¥È¥ì¡¼¥¹¤·¤Æ¤¤¤ë¤Î¤ÇCÅÀ¤Ë¤Ê¤Ã¤Æ¤¤¤ë(eqa_bfecc4.gif)¡¥ ¤³¤Î¤È¤­¡¤BÅÀ¤ÈCÅÀ¤Î´Ö¤Îeqa_phi.gif¤ÎÃͤΰ㤤(¸íº¹)¤òe¤È¤¹¤ë¡¥
CÅÀ¤«¤é¤µ¤é¤Ë¥Õ¥©¥ï¡¼¥É¥È¥ì¡¼¥¹¤·¤¿°ÌÃÖD¤Ï¡¤AÅÀ¤«¤é¤Î¸íº¹2e¤ò´Þ¤ó¤Ç¤¤¤ë(¸íº¹¤Ê¤·¤Ê¤éAÅÀ¤ËÌá¤ë)¡¥ DÅÀ¤Ç¤Î´Ø¿ôÃͤòeqa_barphi.gif¤È¤¹¤ë¤È¡¤

eqa_bfecc5.gif

¤È¤Ê¤ë¡¥¾å¼°¤«¤é¡¤¸íº¹e¤Ï°Ê²¼¤Î¤è¤¦¤Ëµá¤á¤é¤ì¤ë¡¥

eqa_bfecc6.gif

¤è¤êÀµ³Î¤Êeqa_phin+1.gif¤Ï¡¤eqa_phin.gif¤«¤ée¤ò°ú¤¤¤¿¾ìeqa_bfecc7.gif¤è¤êÆÀ¤é¤ì¤ë¡¥

eqa_bfecc8.gif
  • BFECC¤Î¼ÂÁõ
    1. eqa_phin.gif¤ò¥Ð¥Ã¥¯¥È¥ì¡¼¥¹
      eqa_bfecc9.gif
    2. eqa_phia.gif¤ò¥Õ¥©¥ï¡¼¥É¥È¥ì¡¼¥¹
      eqa_bfecc10.gif
    3. ¸íº¹e¤ò°ú¤¤¤¿eqa_phiaa.gif¤ò·×»»
      eqa_bfecc11.gif
    4. eqa_phiaa.gif¤ò¥Ð¥Ã¥¯¥È¥ì¡¼¥¹¤·¤Æ¡¤eqa_phin+1.gif¤ò»»½Ð
      eqa_bfecc12.gif
  • Îã¡§¶ë·ÁÇȤΰÜή

    ¶ë·ÁÇÈ(0.25 < x < 0.75¤Ç1¡¤¤½¤ì°Ê³°¤Ç0)¤ò°ìÄê®ÅÙ(u=0.75)¤Ç°Üή¤µ¤»¤¿·ë²Ì¤ò¼¨¤¹¡¥¥°¥ê¥Ã¥É²òÁüÅÙN=128, ¥·¥ß¥å¥ì¡¼¥·¥ç¥ó¶õ´Ö¤ÎÂ礭¤µL=5.0¡¤¥°¥ê¥Ã¥ÉÉý¦¤x=L/N¡¤¥¿¥¤¥à¥¹¥Æ¥Ã¥×Éý¦¤t=0.1*¦¤x/u¤È¤·¤¿¡¥³¥¿§¤ÎºÙ¤¤Àþ¤Ï1É䴤ȤÎÍúÎò¤ò¼¨¤·¤Æ¤¤¤ë¡¥

    rectan_bfecc.jpg
    ¶ë·ÁÇȤÎBFECC¤Ë¤è¤ë°Üή

MacCormack

»²¹Íʸ¸¥1*1¡¤ »²¹Íʸ¸¥2*2

CIPË¡(Constrained Interpolation Profile scheme)

¹â¼¡Â¿¹à¼°¤òÍѤ¤¤¿Êä´ÖË¡¤Ç¤ÏÊä´Ö¼°¤òÆÀ¤ë¤¿¤á¤Ë¤è¤ê¿¤¯¤Î¥°¥ê¥Ã¥É¤òɬÍפȤ¹¤ë¡¥Î㤨¤Ð¡¤ENO,WENO¤À¤È¼«¿È¤â´Þ¤á¤Æ6¥°¥ê¥Ã¥É(ENO¤Ç¼ÂºÝ¤ËÍѤ¤¤é¤ì¤ë¤Î¤Ï4¥°¥ê¥Ã¥É)¤ÎÃͤ¬É¬Íס¥É÷¾åº¹Ê¬¤À¤È2¥°¥ê¥Ã¥É¤Ç¤¢¤Ã¤¿¤³¤È¤ò¹Í¤¨¤ë¤È3ÇܤˤʤäƤ¤¤ë¡¥¤³¤ì¤ÏÅöÁ³¤Î¤³¤È¤Ç¡¤¹â¼¡Â¿¹à¼°¤Î·¸¿ô¤òÆÀ¤ë¤¿¤á¤Ë¤Ï¿¤¯¤Î´Ø¿ôÃͤòɬÍפȤ¹¤ë¤«¤é¤Ç¤¢¤ë¡¥¤³¤Î¤è¤¦¤ËÍѤ¤¤ë¥°¥ê¥Ã¥É¤¬Áý¤¨¤ë¤È¡¤ÆÃ¤Ë¶­³¦ÉÕ¶á¤Ç¤Î½èÍý¤¬Æñ¤·¤¯¤Ê¤Ã¤Æ¤¯¤ë¡¥¤³¤ì¤ËÂФ·¤Æ¡¤É÷¾åº¹Ê¬¤ÈƱÍͤË2¥°¥ê¥Ã¥É¤Î¤ß¤òÍѤ¤¤Ä¤Ä¡¤¸ûÇÛÃͤòÍøÍѤ¹¤ë¤³¤È¤ÇµÞ·ã¤ËÊѲ½¤¹¤ë´Ø¿ô¤Ç¤âÂбþ¤·¤¿¤Î¤¬CIPË¡(Constrained Interpolation Profile scheme)*17*18*19¤Ç¤¢¤ë*20¡¥

CIPË¡¤Î´ðËÜŪ¤Ê¥¢¥¤¥Ç¥¢¤Ï¡¤°Üή¼°¤òx¤ÇÈùʬ¤·¤¿¤È¤­¡¤¤½¤ÎƳ´Ø¿ôeqa_cip1.gif¤â¤Þ¤¿¡¤eqa_phi_x.gif¤ÈƱÍͤ˰Üή¤¹¤ë¤È¤¤¤¦¤³¤È¤Ç¤¢¤ë(¤¿¤À¤·¡¤eqa_cip2.gif¤È¤¹¤ë)¡¥2¥á¥Ã¥·¥å[i, i+1]´Ö¤Î¥×¥í¥Õ¥¡¥¤¥ë¤Ï¡¤°Ê²¼¤Î3¼¡Êä´Ö´Ø¿ô¤Çɽ¤µ¤ì¤ë¡¥

eqa_cip3.gif

¥°¥ê¥Ã¥É¾å¤Î4¹´Â«¾ò·ïeqa_cip4.gif¤«¤é¡¤

eqa_cip5.gif

¤³¤Î¼êË¡¤ÏÈó¾ï¤Ë´Êñ¤Ë¸«¤¨¤ë¤¬¡¤¤½¤Î¸ú²Ì¤ÏÈó¾ï¤ËÎɹ¥¤Ç¤¢¤ë¡¥ÆÃ¤Ë¶ë·ÁÇȤΤ褦¤ËµÞ·ã¤ËÊѲ½¤¹¤ëÆÃħ¤ò»ý¤Ä´Ø¿ô¤ò°Üή¤µ¤»¤¿¾ì¹ç¤Ç¤â¡¤¤½¤Î·Á¾õ¤ò°Ý»ý¤·¤¿¤Þ¤Þ°Üή¤µ¤»¤ë¤³¤È¤¬¤Ç¤­¤ë¡¥

  • Îã

    ¶ë·ÁÇÈ(0.25 < x < 0.75¤Ç1¡¤¤½¤ì°Ê³°¤Ç0)¤ò°ìÄê®ÅÙ(u=0.75)¤Ç°Üή¤µ¤»¤¿·ë²Ì¤ò¼¨¤¹¡¥¥°¥ê¥Ã¥É²òÁüÅÙN=128, ¥·¥ß¥å¥ì¡¼¥·¥ç¥ó¶õ´Ö¤ÎÂ礭¤µL=5.0¡¤¥°¥ê¥Ã¥ÉÉý¦¤x=L/N¡¤¥¿¥¤¥à¥¹¥Æ¥Ã¥×Éý¦¤t=0.1*¦¤x/u¤È¤·¤¿¡¥³¥¿§¤ÎºÙ¤¤Àþ¤Ï1É䴤ȤÎÍúÎò¤ò¼¨¤·¤Æ¤¤¤ë¡¥

    rectan_cip.jpg
    ¶ë·ÁÇȤÎCIP¤Ë¤è¤ë°Üή

RCIPË¡(Rational Constrained Interpolation Profile scheme)

Í­Íý´Ø¿ô¤ò»È¤Ã¤¿CIPË¡¡¥ CIPË¡¤Î·çÅÀ¤Ï´Ø¿ô¤ò°Üή¤µ¤»¤ë¤È¤­¡¤¼ã´³¤Î¥ª¡¼¥Ð¡¼¥·¥å¡¼¥È¤¬¤Ç¤ë¤³¤È¤Ç¤¢¤ë¡¥ ¤³¤Î¥ª¡¼¥Ð¡¼¥·¥å¡¼¥È¤Ï°Üή¤¬¿Ê¤ó¤Ç¤âÂ礭¤¯¤Ï¤Ê¤é¤Ê¤¤¤¿¤áÌäÂ꤬¤Ê¤¤¤è¤¦¤Ë»×¤¨¤ë¤¬¡¤ ¿å¤È¶õµ¤¤ÎÆóÁêή¤Ê¤É¡¤·×»»¤·¤¿¤¤ÊªÍýÎ̤κ¹¤¬Èó¾ï¤ËÂ礭¤¤¾ì¹ç¤Ë¡¤ ¾®¤µ¤Ê¥ª¡¼¥Ð¡¼¥·¥å¡¼¥È¤¬Â礭¤ÊÌäÂê¤È¤Ê¤ë¡¥ RCIPË¡ *21, *22 ¤Ï¤³¤ÎÌäÂê¤ò²ò·è¤¹¤ë¡¥ RCIPË¡¤ÏCIPË¡¤Î3¼¡´Ø¿ô¤ÎÂå¤ï¤ê¤ËÍ­Íý´Ø¿ô

eqa_rcip1.gif

¤òÍѤ¤¤ë¡¥ ¤³¤³¤Ç¡¤eqa_rcip2.gif¤Ï¥Ñ¥é¥á¡¼¥¿¤Ç0¤«1¤ÎÃͤò¤È¤ë¡¥ eqa_rcip3.gif¤Î¤È¤­¤ÏCIPË¡¤ÈƱ¤¸¤Ç¤¢¤ê¡¤eqa_rcip4.gif¤Î¤È¤­¡¤ ¤³¤Î´Ø¿ô¤ÏñĴÀ­¤È±úÆÌÀ­¤òÊݸ¤¹¤ëÍ­Íý´Ø¿ô¤È¤Ê¤ë¡¥ eqa_rcip5.gif¤Ç¤¢¤ê, eqa_rcip6.gif¤Ç¤¢¤ë¡¥ ¾å¼°¤Î³Æ·¸¿ô¤Ï°Ê²¼¤Ç¤¢¤ë¡¥

eqa_rcip7.gif

¤³¤³¤Ç¡¤

eqa_rcip8.gif

RCIPË¡°Ê³°¤Ë¤â¡¤TangentÊÑ´¹¤òÍѤ¤¤ë¤³¤È¤Ç ¥ª¡¼¥Ð¡¼¥·¥å¡¼¥È¤òÍÞ¤¨¤ëÊýË¡¤âÄ󰯤µ¤ì¤Æ¤¤¤ë *23¡¥ TangentÊÑ´¹¤òÍѤ¤¤¿¼êË¡¤Ç¤ÏʪÂγ¦Ì̤¬¥·¥ã¡¼¥×¤ËÊݤ¿¤ì¤ë¤È¤¤¤¦ÆÃħ¤ò»ý¤Ä¡¥ ¤³¤ì¤Ï¿ôÃÍήÂη׻»¾å¤ÏÈó¾ï¤ËÍ­±×¤Ç¤¢¤ë¤¬¡¤ ¥°¥é¥Õ¥£¥Ã¥¯¥¹¤ÇÍѤ¤¤¿¾ì¹ç¡¤¥°¥ê¥Ã¥É²òÁüÅ٤ˤè¤Ã¤Æ¤Ï ±ÕÂÎɽÌ̤¬¤¢¤Þ¤ê³ê¤é¤«¤Ë¤Ê¤é¤º¡¤ÊݸÀ­¤âÊݾڤµ¤ì¤Ê¤¤¡¥

RCIPË¡¤Ë¤è¤ëÌ©Åٴؿô¤Î°Üή¤Ç¤Ï¡¤³¦Ì̤òɽ¤¹0¤«¤é1¤Ø¤ÎÊѲ½Éôʬ¤¬³È»¶¤·¡¤ ´Ø¿ô¤Î·¹¤­¤¬¤Ê¤À¤é¤«¤Ë¤Ê¤ë¡¥ ¤³¤Î³ê¤é¤«¤Ê³¦Ì̤ÏCG¤Ç¤ÎÍøÍѤˤª¤¤¤Æ¤ÏÈþ¤·¤¤¥ì¥ó¥À¥ê¥ó¥°·ë²Ì¤òÀ¸¤à¤¬¡¤ ¥·¥ß¥å¥ì¡¼¥·¥ç¥ó¤Ç¤Ï¿ôÃÍŪ¤ÊÉÔ°ÂÄêÀ­¤ò°ú¤­µ¯¤³¤¹¡¥ Ì©Åٴؿô¤ÎÂÎÀÑ°ÜÆ°¤Ë¤è¤ëSTAA¼êË¡ *24 ¤ò»È¤¦¤³¤È¤Ç¡¤ ³¦Ì̳Ȼ¶¤òÍÞÀ©¤¹¤ë¤³¤È¤¬¤Ç¤­¤ë¡¥ ¤Þ¤¿¡¤³È»¶¤ò¤¢¤ëÄøÅÙ¤ÎÉý¤ÇÀ©¸æ¤¹¤ëÊýË¡ *25 ¤â¤¢¤ë¡¥

  • Îã

    ¶ë·ÁÇÈ(0.25 < x < 0.75¤Ç1¡¤¤½¤ì°Ê³°¤Ç0)¤ò°ìÄê®ÅÙ(u=0.75)¤Ç°Üή¤µ¤»¤¿·ë²Ì¤ò¼¨¤¹¡¥¥°¥ê¥Ã¥É²òÁüÅÙN=128, ¥·¥ß¥å¥ì¡¼¥·¥ç¥ó¶õ´Ö¤ÎÂ礭¤µL=5.0¡¤¥°¥ê¥Ã¥ÉÉý¦¤x=L/N¡¤¥¿¥¤¥à¥¹¥Æ¥Ã¥×Éý¦¤t=0.1*¦¤x/u¤È¤·¤¿¡¥³¥¿§¤ÎºÙ¤¤Àþ¤Ï1É䴤ȤÎÍúÎò¤ò¼¨¤·¤Æ¤¤¤ë¡¥

    rectan_tcip.jpg
    ¶ë·ÁÇȤÎTangentÊÑ´¹CIPË¡¤Ë¤è¤ë°Üή
    rectan_rcip.jpg
    ¶ë·ÁÇȤÎRCIP¤Ë¤è¤ë°Üή

CIP-CSLË¡

CIPË¡¤Ç¤Ï³Ê»Òi¤Î¥×¥í¥Õ¥¡¥¤¥ëeqa_phii.gif¤Î·èÄê¤Î¤¿¤á¤Ë¡¤ 4¹´Â«¾ò·ï¤«¤é3¼¡Â¿¹à¼°¤Î4·¸¿ô¤òµá¤á¤¿¤¬¡¤ ¤³¤Î¾ò·ï¤Ç¤ÏÃͤȤ½¤Î¸ûÇÛÃͤÏÊݸ¤µ¤ì¤ë¤¬ÂÎÀѤÏÊݸ¤µ¤ì¤Ê¤¤¡¥ Êݸ·ÏCIP°Üήˡ¤òÍѤ¤¤ë¤³¤È¤Ç¤³¤ì¤ò²ò·è¤Ç¤­¤ë¡¥ Êݸ·Ï¤Ç¤ÎCIPË¡¤Î¼ÂÁõ¤È¤·¤Æ¡¤CIP-CSL2Ë¡¤äCIP-CSL4Ë¡, CIP-CSL3Ë¡¤Ê¤É¤¬Ä󰯤µ¤ì¤Æ¤¤¤ë¡¥

CIP-CSL4

CIP-CSL4Ë¡*26¡¤¤Ç¤Ï¡¤CIPË¡¤Î4¹´Â«¾ò·ï¤Ë´Ø¿ôeqa_phi.gif¤ÎÀÑʬÃÍeqa_rhoi-12.gif¤ò¤µ¤é¤Ë²Ã¤¨¤ë¡¥

eqa_cipcsl4_1.gif

¤Ä¤Þ¤ê¡¤

eqa_cipcsl4_2.gif

¤Î5¹´Â«¾ò·ï¤òËþ­¤µ¤»¤ë¤¿¤á¤Ë°Ê²¼¤Î4¼¡Â¿¹à¼°¤ò¥×¥í¥Õ¥¡¥¤¥ë¤ËÍѤ¤¤ë¤Î¤¬ CIP-CSL4Ë¡¤Ç¤¢¤ë¡¥

eqa_cipcsl4_3.gif

¤³¤³¤Ç¡¤eqa_ai.gif,eqa_bi.gif,eqa_ci.gif,eqa_sdi.gif,eqa_ei.gif¤Ï¥°¥ê¥Ã¥ÉiÆâ¤Ç¤Î¿¹à¼°Êä´Ö¥Ñ¥é¥á¡¼¥¿¤Ç¤¢¤ë¡¥

5¹´Â«¾ò·ïeqa_phii.gif,eqa_gi.gif,eqa_phii-1.gif,eqa_gi-1.gif,eqa_rhoi-12.gif¤«¤é¡¤

eqa_cipcsl4_4.gif

CIPË¡¤Ç¤Ï»»½Ð¤·¤¿·¸¿ôeqa_ai.gif,eqa_bi.gif,eqa_ci.gif,eqa_sdi.gif,eqa_ei.gif¤è¤ê¡¤ eqa_phi_x.gif¤Èeqa_g_x.gif¤ò¹¹¿·¤·¤Æ¤¤¤¿¤¬¡¤ CIP-CSL4Ë¡¤Ç¤Ï¤µ¤é¤ËÀÑʬÃÍeqa_rho.gif¤Î¹¹¿·¤¬É¬ÍפȤʤ롥

eqa_rho.gif¤Î»þ´ÖȯŸ¤Ï¡¤

eqa_cipcsl4_5.gif

¤³¤³¤Ç¡¤

eqa_cipcsl4_6.gif

¤Ç¤¢¤ë¡¥

CIP-CSL2

CIP-CSL2Ë¡*27,*28,*29¤Ï¡¤ ÃÍeqa_phi_x.gif¤È¤½¤ÎÀÑʬÃÍeqa_cipcsl2_1.gif¤òÍѤ¤¤ë¡¥ ÀÑʬÃÍeqa_D.gif¤ËÂФ¹¤ë°ÜήÊýÄø¼°¤Ï¡¤

eqa_cipcsl2_2.gif

$D$¤ÎÈùʬeqa_cipcsl2_3.gif¤ÈÄêµÁ¤¹¤ë¤È

eqa_cipcsl2_4.gif

¤³¤ì¤Ï1¼¡¸µ¤Î°ÜήÊýÄø¼°¤ÈƱ¤¸¤Ç¤¢¤ê¡¤ CIPË¡¤Ç¤Îeqa_cipcsl2_5.gif¤ÈÃÖ¤­´¹¤¨¤ë¤³¤È¤Ç CIPË¡¤ÈƱÍͤ˷׻»¤¬¤Ç¤­¤ë¡¥

³Ê»ÒÅÀiÆâ¤Ç¤Îeqa_Di.gif¤ò°Ê²¼¤Î¤è¤¦¤ËÄêµÁ¤¹¤ë¡¥

eqa_cipcsl2_6.gif

eqa_Di.gif¤Ïeqa_xi.gif¤«¤éÊä´ÖÅÀ¤Þ¤Ç¤ÎÀÑʬÃͤòɽ¤·¡¤ 3¼¡´Ø¿ô¤ÇÊä´Ö¤¹¤ë¡¥

eqa_cipcsl2_7.gif

CIPË¡¤Ë¤ª¤±¤ë¶õ´ÖÈùʬÃÍg¤Ïeqa_phi.gif¤ÇÃÖ¤­´¹¤¨¤é¤ì¤ë¤Î¤Ç¡¤ [eqa_xi.gif, eqa_xi+1.gif]¤Î¥×¥í¥Õ¥¡¥¤¥ë¤Ï¡¤

eqa_cipcsl2_8.gif

eqa_D.gif¤ÎÄêµÁ¤è¤ê¡¤

eqa_cipcsl2_9.gif

¤Þ¤¿¡¤

eqa_cipcsl2_10.gif

¤³¤ì¤é¤Î¾ò·ï¤Ë¤è¤ê·¸¿ôeqa_ai.gif,eqa_bi.gif¤Ï°Ê²¼¤Î¤è¤¦¤Ëµá¤á¤é¤ì¤ë¡¥

eqa_cipcsl2_11.gif

eqa_rho.gif¤Î»þ´ÖȯŸ¤Ï¡¤eqa_xi.gif,eqa_xi+1.gif¤ò¥Ð¥Ã¥¯¥È¥ì¡¼¥¹¤·¤¿°ÌÃÖeqa_cipcsl2_12.gif¤Ë¶´¤Þ¤ì¤¿Éôʬ¤ÎÀÑʬÃͤȤʤë(²¼¿Þ)¡¥

eqa_cipcsl2_13.gif
csl2_int.gif

CIP-CSL3

CIP-CSL3Ë¡*30,*31,*32¤Ï¡¤¥°¥ê¥Ã¥É¥»¥ë[eqa_xi-1.gif, eqa_xi.gif]´Ö¤ÎÀÑʬÃͤȥ°¥ê¥Ã¥ÉÃæ¿´eqa_xi-12.gif¤Ë¤ª¤±¤ë¸ûÇÛ(¥°¥ê¥Ã¥Éüeqa_xi.gif¤Ë¤ª¤±¤ë¸ûÇÛ(gradient) eqa_gi.gif¤È¶èÊ̤¹¤ë¤¿¤á¤Ëslope¤È¸Æ¤Ó eqa_sdi.gif ¤Çɽ¤¹)¤òÍѤ¤¤ÆCIPÊä´Ö¤ò¹Ô¤¦¼êË¡¤Ç¤¢¤ë¡¥

CIP-CSL3Ë¡¤Ë¤è¤ë°Üή¹à¤Î²òË¡¤Ç¤Ï¡¤¤Þ¤º¡¤n¥¹¥Æ¥Ã¥×¤Ç¤ÎÃÍeqa_phin.gif¤«¤é¡¤ Ãæ´ÖÃÍeqa_tilde_phi.gif¤òµá¤á¤ë¡¥¥»¥ß¥é¥°¥é¥ó¥¸¥åË¡¤Ë¤è¤ëÃæ´ÖÃͤλ»½Ð¼°(1¼¡¸µ)¤Ï¡¤

eqa_cipcsl3_1.gif

¤Ç¤¢¤ë¡¥ °Üή®ÅÙ¾ì¤ÎÊý¸þ¤Ë¤è¤ê°Ê²¼¤ÎÊä´Ö¤ò»È¤¤Ê¬¤±¤ë¡¥

eqa_cipcsl3_2.gif

¤½¤·¤Æ¡¤

eqa_cipcsl3_3.gif

º¸Â¦Í×ÁÇeqa_phiiL.gif¤Ç¤Ï¡¤¥°¥ê¥Ã¥É¤ÎüÅÀeqa_xi.gif,eqa_xi-1.gif¤Ë¤ª¤¤¤Æ¡¤¾å¤Î¼°¤è¤ê¡¤eqa_cipcsl3_4.gif¤Ç¤¢¤ë¡¥ ¤½¤Î¾¤ÎÅÀ¤Ç¤ÎÊä´Ö¤Ë¤Ï¥°¥ê¥Ã¥É´Ö¤ÎÃͤòÀÑʬ¤·¤¿ÀÑʬÃÍeqa_rhoi-12n.gif¤È¥°¥ê¥Ã¥ÉÃæ¿´¤Î·¹¤­(slope) eqa_di-12n.gif¤òÍѤ¤¤ë¡¥

eqa_cipcsl3_5.gif
eqa_cipcsl3_6.gif

eqa_phiin.gif,eqa_phii-1n.gif,eqa_rhoi-12n.gif,eqa_di-12n.gif¤«¤é¡¤3¼¡Êä´Ö¤Î·¸¿ôeqa_cipcsl3_7.gif¤ò»»½Ð¤¹¤ë¡¥

eqa_cipcsl3_8.gif

¤³¤³¤Ç¡¤eqa_cipcsl3_9.gif¤Ç¤¢¤ë¡¥ ¤Þ¤¿¡¤eqa_phiiR.gif¤Ë¤Ä¤¤¤Æ¤â¡¤

eqa_cipcsl3_10.gif

¤È¤Ê¤ë¡¥ ¤Þ¤¿¡¤ÀÑʬÃÍeqa_rhoi-12n.gif¤Ï¼¡¼°¤Ç¹¹¿·¤¹¤ë¡¥

eqa_cipcsl3_11.gif

¤³¤³¤Ç¡¤eqa_gi.gif¤Ïeqa_delta_t.gif´Ö¤Ë¶­³¦eqa_xi.gif¤òÄ̤ëeqa_rho.gif¤Îή«(flux)¤Ç¤¢¤ë¡¥

eqa_cipcsl3_12.gif

¤³¤ì¤é¤Ë¤è¤ê»»½Ð¤·¤¿eqa_tilde_phi.gif¤è¤ê¡¤n+1¥¹¥Æ¥Ã¥×¤Ç¤Î¹¹¿·¤µ¤ì¤¿Ãͤϡ¤

eqa_cipcsl3_13.gif

¤Ç¤¢¤ë¡¥

slope eqa_di-12.gif¤Ï¡¤Hyman*33,CW*34,UNO*35¤Ê¤É¤Î¶á»÷¼êË¡¤Çeqa_phin.gif¤è¤ê·×»»¤¹¤ë¡¥ ¤³¤Î3¤Ä¤Î¶á»÷Ë¡¤Î¾ÜºÙ¤ÊÈæ³Ó¤ÏXiao¤é¤ÎÏÀʸ¤Ë½Ò¤Ù¤é¤ì¤Æ¤¤¤ë¡¥

  • Îã

    ¶ë·ÁÇÈ(0.25 < x < 0.75¤Ç1¡¤¤½¤ì°Ê³°¤Ç0)¤ò°ìÄê®ÅÙ(u=0.75)¤Ç°Üή¤µ¤»¤¿·ë²Ì¤ò¼¨¤¹¡¥¥°¥ê¥Ã¥É²òÁüÅÙN=128, ¥·¥ß¥å¥ì¡¼¥·¥ç¥ó¶õ´Ö¤ÎÂ礭¤µL=5.0¡¤¥°¥ê¥Ã¥ÉÉý¦¤x=L/N¡¤¥¿¥¤¥à¥¹¥Æ¥Ã¥×Éý¦¤t=0.1*¦¤x/u¤È¤·¤¿¡¥³¥¿§¤ÎºÙ¤¤Àþ¤Ï1É䴤ȤÎÍúÎò¤ò¼¨¤·¤Æ¤¤¤ë¡¥

    rectan_cip-csl4.jpg
    ¶ë·ÁÇȤÎCIP-CSL4Ë¡¤Ë¤è¤ë°Üή
    rectan_cip-csl2.jpg
    ¶ë·ÁÇȤÎCIP-CSL2Ë¡¤Ë¤è¤ë°Üή

ÂÎÀÑÊݸ¤ò³Î¤«¤á¤ë¤¿¤á¤ËSin®ÅÙ¾ì¤Ç°Üή¤µ¤»¤¿·ë²Ì¤ò¼¨¤¹¡¥

¶ë·ÁÇÈ(0.25 < x < 0.75¤Ç1¡¤¤½¤ì°Ê³°¤Ç0)¤òSin®ÅÙ¾ì(u=sin(¦Ðx/5))¤Çt=5¤Þ¤Ç°Üή¤µ¤»¤¿·ë²Ì¤ò¼¨¤¹¡¥¥°¥ê¥Ã¥É²òÁüÅÙN=128, ¥·¥ß¥å¥ì¡¼¥·¥ç¥ó¶õ´Ö¤ÎÂ礭¤µL=5.0¡¤¥°¥ê¥Ã¥ÉÉý¦¤x=L/N¡¤¥¿¥¤¥à¥¹¥Æ¥Ã¥×Éý¦¤t=0.1*¦¤x/u¤È¤·¤¿¡¥ÀĤ¤Àþ¤Ï®Åپ졤³¥¿§¤ÎºÙ¤¤Àþ¤Ï1É䴤ȤÎÍúÎò¤ò¼¨¤·¤Æ¤¤¤ë¡¥

sin_rectan_cip.jpg
¶ë·ÁÇȤòSin®ÅÙ¾ì¤ÇCIPË¡¤Ë¤è¤ê°Üή
sin_rectan_cip-csl4.jpg
¶ë·ÁÇȤòSin®ÅÙ¾ì¤ÇCIP-CSL4Ë¡¤Ë¤è¤ê°Üή
sin_rectan_cip-csl2.jpg
¶ë·ÁÇȤòSin®ÅÙ¾ì¤ÇCIP-CSL2Ë¡¤Ë¤è¤ê°Üή

Êݸ·Ï¥»¥ß¥é¥°¥é¥ó¥¸¥åË¡(Conservative Semi-Lagrangian scheme)

Êݸ·Ï¥»¥ß¥é¥°¥é¥ó¥¸¥åË¡*36¤Ï¡¤¥»¥ß¥é¥°¥é¥ó¥¸¥åË¡¤Î½Å¤ß¤òÀµµ¬²½¤¹¤ë¤³¤È¤Ç ÂÎÀÑÊݸ¤ò¼Â¸½¤·¤¿°Üήˡ¤Ç¤¢¤ë¡¥

¥¹¥«¥é¡¼ÎÌ eqa_phi.gif ¤Î°ÜήÊýÄø¼°

eqa_csl1.gif

Ì©ÅÙ eqa_rho.gif ¤òÍѤ¤¤¿¼ÁÎÌÊݸ¼°

eqa_csl2.gif

°ÜήÊýÄø¼°¡ßeqa_rho.gif + ¼ÁÎÌÊݸ¼°¡ßeqa_phi.gif¤Ç¡¤

eqa_csl3.gif

ÀѤÎÈùʬ¤Îˡ§( eqa_csl4.gif )¤è¤ê°Ê²¼¤Î¼°¤¬Æ³¤«¤ì¤ë¡¥

eqa_csl5.gif

¤³¤³¤Ç¡¤eqa_csl6.gif ¤È¤¹¤ë¤È¡¤eqa_hat_phi.gif ¤ÏÊݸÎ̤Ȥ·¤Æ°·¤¨¤ë¡¥

¥°¥ê¥Ã¥ÉÃæ¿´ºÂɸ¤òeqa_Vxi.gif ¤È¤¹¤ë¤È¡¤¥»¥ß¥é¥°¥é¥ó¥¸¥åË¡¤Ê¤É°Üήˡ¤Ï´ðËÜŪ¤Ë¤Ï°Ê²¼¤Î¤è¤¦¤Ë½Å¤ßÉÕ¤­Ï¤Çɽ¤¹¤³¤È¤¬¤Ç¤­¤ë¡¥

eqa_csl7.gif

¤³¤³¤Ç¡¤eqa_wij.gif ¤Ï½Å¤ß¤Ç¡¤eqa_csl8.gif ¡¥

ËÜÍ衤´°Á´¤Ë¼ÁÎ̤¬Êݸ¤µ¤ì¤ë¤Ê¤é¤Ð¤É¤Î¥°¥ê¥Ã¥É¤Ë¤ª¤¤¤Æ¤â¡¤eqa_csl9.png ¤È¤Ê¤ë¤Ù¤­¤Ç¤¢¤ë¤¬¡¤ Á´¥°¥ê¥Ã¥É¤Ç°Üή¤·¤¿¸å¤Ë eqa_sigma_j.gif ¤òÄ´¤Ù¤ë¤È¡¤eqa_csl10.gif ¤ä eqa_csl11.gif ¤¬µ¯¤³¤ê¤¦¤ë¡¥¤³¤ì¤ò eqa_csl12.gif¤È ¤Ê¤ë¤è¤¦¤Ë½¤Àµ¤¹¤ë¡¥

  • eqa_csl13.gif¤Î¾ì¹ç
    eqa_csl13.gif¤Î¾ì¹ç¤Ï´Êñ¤Ç¡¤Ã±½ã¤Ë½Å¤ß¤òeqa_sigma_j.gif¤Ç³ä¤ë¡¥
    eqa_csl14.gif
  • eqa_csl11.gif¤Î¾ì¹ç
    eqa_csl11.gif¤Î¾ì¹ç¤Ï¡¤Â­¤ê¤Ê¤¤ÊªÍýÎ̤ò­¤¹É¬Íפ¬¤¢¤ë¡¥ ¤½¤Î¤¿¤á¡¤¥Õ¥©¥ï¡¼¥É¥È¥ì¡¼¥¹¤·¤¿·ë²Ì¤òÄɲ乤롥 ¥Õ¥©¥ï¡¼¥É¥È¥ì¡¼¥¹¤·¤¿¤È¤­¤Î½Å¤ß¤ò eqa_fij.gif ¤È¤¹¤ë¤ÈÀµµ¬²½¤·¤¿½Å¤ß¤Ï°Ê²¼¤È¤Ê¤ë¡¥
    eqa_csl15.gif

ºÇ½ªÅª¤ËÀµµ¬²½¤·¤¿½Å¤ß¤òÍѤ¤¤ÆÃͤò¹¹¿·¤¹¤ë¡¥

eqa_csl16.gif

¼ÂÁõ

  1. ¥Ð¥Ã¥¯¥È¥ì¡¼¥¹¤Ç eqa_csl17.gif ¤ò·×»»¤·¡¤½Å¤ß eqa_wij.gif ¤òÊÑ¿ô¤Ë³ÊǼ¤·¤Æ¤ª¤¯¡¥
  2. ³Æ¥°¥ê¥Ã¥É¤Ç eqa_csl18.gif ¤ò·×»»
  3. eqa_csl11.gif ¤Ê¤é¤Ð¡¤eqa_fij.gif ¤ò¥Õ¥©¥ï¡¼¥É¥È¥ì¡¼¥¹¤Çµá¤á¡¤Àµµ¬²½¤·¤¿½Å¤ß eqa_csl19.gif ¤ò»»½Ð¡¥eqa_csl13.gif ¤Ê¤é¤Ð¡¤eqa_csl20.gif ¤ò·×»»¡¥
  4. Àµµ¬²½¤·¤¿½Å¤ß¤Ç eqa_phin+1.gif ¤ò»»½Ð
  • Îã

    ¶ë·ÁÇÈ(0.25 < x < 0.75¤Ç1¡¤¤½¤ì°Ê³°¤Ç0)¤ò°ìÄê®ÅÙ(u=0.75)¤Ç°Üή¤µ¤»¤¿·ë²Ì¤ò¼¨¤¹¡¥¥°¥ê¥Ã¥É²òÁüÅÙN=128, ¥·¥ß¥å¥ì¡¼¥·¥ç¥ó¶õ´Ö¤ÎÂ礭¤µL=5.0¡¤¥°¥ê¥Ã¥ÉÉý¦¤x=L/N¡¤¥¿¥¤¥à¥¹¥Æ¥Ã¥×Éý¦¤t=0.1*¦¤x/u¤È¤·¤¿¡¥³¥¿§¤ÎºÙ¤¤Àþ¤Ï1É䴤ȤÎÍúÎò¤ò¼¨¤·¤Æ¤¤¤ë¡¥

    rectan_csl.jpg
    ¶ë·ÁÇȤÎÊݸ·Ï¥»¥ß¥é¥°¥é¥ó¥¸¥åË¡¤Ë¤è¤ë°Üή

ÂÎÀÑÊݸ¤ò³Î¤«¤á¤ë¤¿¤á¤ËSin®ÅÙ¾ì¤Ç°Üή¤µ¤»¤¿·ë²Ì¤ò¼¨¤¹¡¥

¶ë·ÁÇÈ(0.25 < x < 0.75¤Ç1¡¤¤½¤ì°Ê³°¤Ç0)¤òSin®ÅÙ¾ì(u=sin(¦Ðx/5))¤Çt=5¤Þ¤Ç°Üή¤µ¤»¤¿·ë²Ì¤ò¼¨¤¹¡¥¥°¥ê¥Ã¥É²òÁüÅÙN=128, ¥·¥ß¥å¥ì¡¼¥·¥ç¥ó¶õ´Ö¤ÎÂ礭¤µL=5.0¡¤¥°¥ê¥Ã¥ÉÉý¦¤x=L/N¡¤¥¿¥¤¥à¥¹¥Æ¥Ã¥×Éý¦¤t=0.1*¦¤x/u¤È¤·¤¿¡¥ÀĤ¤Àþ¤Ï®Åپ졤³¥¿§¤ÎºÙ¤¤Àþ¤Ï1É䴤ȤÎÍúÎò¤ò¼¨¤·¤Æ¤¤¤ë¡¥

sin_rectan_sl.jpg
¶ë·ÁÇȤòSin®ÅÙ¾ì¤Ç¥»¥ß¥é¥°¥é¥ó¥¸¥åË¡(Àþ·ÁÊä´Ö)¤Ë¤è¤ê°Üή
sin_rectan_csl.jpg
¶ë·ÁÇȤòSin®ÅÙ¾ì¤ÇÊݸ·Ï¥»¥ß¥é¥°¥é¥ó¥¸¥åË¡¤Ë¤è¤ê°Üή

»þ´ÖÈùʬ¤ÎÎ¥»¶²½

Á°¿Ê¥ª¥¤¥é¡¼Ë¡

¶õ´ÖÈùʬeular.eq1.gif¤Ë´Ø¤¹¤ëÎ¥»¶²½Ë¡¤Ë¤Ä¤¤¤ÆÂ¿¤¯½Ò¤Ù¤Æ¤­¤¿°ìÊý¡¤»þ´ÖÈùʬeular.eq2.gif¤Ë´Ø¤·¤Æ¤Ï°Ê²¼¤Îñ½ã¤Ê1¼¡ÀºÅÙ¤ÎÎ¥»¶²½¤·¤«½Ò¤Ù¤Æ¤Ê¤¤¡¥

eular.eq3.gif

¤³¤ì¤ÏÁ°¿Ê¥ª¥¤¥é¡¼Ë¡¤È¸Æ¤Ð¤ì¤Æ¤¤¤ë¡¥¤³¤ì¤ËÂФ·¤Æ¡¤¥ì¥Ù¥ë¥»¥Ã¥ÈË¡¤Ê¤É¤Ç¤è¤¯ÍѤ¤¤é¤ì¤ë¤Î¤¬TVD¥ë¥ó¥²¥¯¥Ã¥¿(Total-Variation Diminishing Runge-Kutta:°Ê²¼TVD RK)¤Ç¤¢¤ë¡¥¥ë¥ó¥²¥¯¥Ã¥¿Ë¡¤Ï»þ´ÖÊý¸þ¤ÎÎ¥»¶²½Ë¡¤È¤·¤Æ¤â¤Ã¤È¤â¥Ý¥Ô¥å¥é¡¼¤ÊÊýË¡¤Ç¤¢¤ê¡¤¼¡¿ô¤ò¾å¤²¤Æ¤¤¤±¤Ð¤É¤ó¤É¤óÀºÅÙ¤â¾å¤¬¤ë(¹â¼¡(8¼¡ÀºÅ٤ʤÉ)¤Î¥ë¥ó¥²¥¯¥Ã¥¿(RK)¤Ï±ÒÀ±¤Îµ°Æ»·×»»¤Ê¤É¤Ë¤âÍѤ¤¤é¤ì¤Æ¤¤¤ë¤é¤·¤¤)¡¥¼ÂºÝ¤Ë¤ÏÁ°¿Ê¥ª¥¤¥é¡¼Ë¡¤Ï1¼¡ÀºÅÙ¤ÎRK¤ÈƱ¤¸¤Ç¤¢¤ë¡¥TVD RK¤ÏTVD¤òËþ¤¿¤¹RK¤Ç¤¢¤ë¡¥¤Þ¤¿¡¤·×»»»þ´Ö¤Ï¤«¤«¤ë¤¬°ÂÄꤷ¤¿¿ôÃÍ·×»»¤¬²Äǽ¤Ê±¢²òË¡¤äͽ¬»Ò¡¦½¤Àµ»ÒË¡¤Ê¤É¤â¤¢¤ë¡¥

¥ë¥ó¥²¥¯¥Ã¥¿Ë¡(Runge-Kutta scheme)

¥ë¥ó¥²¥¯¥Ã¥¿Ë¡(°Ê²¼RK)¤Ïrk.eq1.gif¤«¤éÊ£¿ô¤ÎÃʳ¬¤ò·Ð¤Æ¤è¤ê¹âÀºÅ٤ʶá»÷¤ò¹Ô¤¦¡¥ ÃÊ¿ô¤ò¾å¤²¤ë¤³¤È¤Ç¤è¤ê¹â¼¡¤ÎÀºÅÙ¤òÆÀ¤é¤ì¤ë¡¥ ¤¿¤À¤·¡¤ÃÊ¿ô=¼¡¿ô¤È¤Ê¤ë¤Î¤Ï4ÃÊ4¼¡¤Þ¤Ç¤Ç¡¤¤½¤ì°Ê¹ß¤Ï5ÃÊ4¼¡¤ä8ÃÊ6¼¡¤Ê¤ÉÃÊ¿ô¤è¤ê¤âÄ㤤¼¡¿ô¤Ë¤Ê¤ë¡¥ ¤½¤Î¤¿¤á4¼¡¤Î¥ë¥ó¥²¥¯¥Ã¥¿(RK4)¤¬¤â¤Ã¤È¤â¤è¤¯»È¤ï¤ì¤ë¡¥ ¤Á¤Ê¤ß¤Ë¡¤Á°¿Ê¥ª¥¤¥é¡¼Ë¡¤Ï1ÃÊ1¼¡¤Î¥ë¥ó¥²¥¯¥Ã¥¿¤ÈƱ¤¸¤Ç¤¢¤ë¡¥

°ÜήÊýÄø¼°¤Î»þ´ÖÈùʬ°Ê³°¤Î¹à¤òrk.eq2.gif¤È¤·¤Æ¡¤°ìÈÌŪ¤ÊRK¤Ï¡¤

rk.eq3.gif

¤³¤³¤Ç¡¤rk.eq4.gif¤Ç¤¢¤ë¡¥ ¾åÉÕ¤­¤Îrk.eq5.gif¤ÏRK¤Î¥¹¥Æ¥Ã¥×¤´¤È¤ÎÃæ´ÖÃͤò¼¨¤·¤Æ¤¤¤ë¡¥

RK2(²þÎÉ¥ª¥¤¥é¡¼Ë¡)

2ÃÊ2¼¡¤Î¥ë¥ó¥²¥¯¥Ã¥¿¤Ï²þÎÉ¥ª¥¤¥é¡¼Ë¡(modified Eular method)¤È¤â¸Æ¤Ð¤ì¤Æ¤¤¤ë¡¥

rk.eq6.gif

RK3

3ÃÊ3¼¡¤Î¥ë¥ó¥²¥¯¥Ã¥¿¤Î¼°¤Ï°Ê²¼¡¥

rk.eq7.gif

RK4

4ÃÊ4¼¡¤Î¥ë¥ó¥²¥¯¥Ã¥¿¤Î¼°¤Ï°Ê²¼¡¥

rk.eq8.gif

Îã:¶ë·ÁÇȤΰÜή

¶ë·ÁÇÈ(0.25 < x < 0.75¤Ç1¡¤¤½¤ì°Ê³°¤Ç0)¤ò°ìÄê®ÅÙ(u=0.75)¤Ç°Üή¤µ¤»¤¿·ë²Ì¤ò¼¨¤¹¡¥¥°¥ê¥Ã¥É²òÁüÅÙN=128, ¥·¥ß¥å¥ì¡¼¥·¥ç¥ó¶õ´Ö¤ÎÂ礭¤µL=5.0¡¤¥°¥ê¥Ã¥ÉÉý¦¤x=L/N¡¤¥¿¥¤¥à¥¹¥Æ¥Ã¥×Éý¦¤t=(1.0/CFL)*¦¤x/u¤È¤·¤Æ¡¤CFL=7, 1.1, 0.535¤Î¾ì¹ç¤ò¼¨¤¹¡¥

rectan_rk_cfl7.jpg
Á°¿Ê¥ª¥¤¥é¡¼,RK2, RK3¤Ç¤Î°Üή·ë²Ì¡¥CFL=7¤Ç¦¤t=0.00744¡¥
rectan_rk_cfl11.jpg
RK2,RK3,RK4¤Ç¤Î°Üή·ë²Ì¡¥CFL=1.1¤Ç¦¤t=0.0473¡¥
rectan_rk_cfl0535.jpg
RK3,RK4¤Ç¤Î°Üή·ë²Ì¡¥CFL=0.535¤Ç¦¤t=0.0972¡¥

¥ë¥ó¥²¥¯¥Ã¥¿¤Î¼¡¿ô¤¬¾å¤¬¤ë¤Ë¤Ä¤ì¤Æ¤è¤êÂ礭¤Ê¥¿¥¤¥à¥¹¥Æ¥Ã¥×¤Ç¤â°ÂÄꤷ¤Æ·×»»¤Ç¤­¤ë¤è¤¦¤Ë¤Ê¤ë¡¥²¼2¤Ä¤Î¥°¥é¥Õ¤Ç¤ÏCFL=1.1, 0.535¤ÈÃæÅÓȾü¤Ê¿ô»ú¤Ë¤Ê¤Ã¤Æ¤¤¤ë¤¬¡¤¤³¤ì¤ÏRK2,RK3¤¬¿¶Æ°¤ò»Ï¤á¤ë¸Â³¦¤òõ¤Ã¤ÆÀßÄꤷ¤¿¤¿¤á¤Ç¤¢¤ë¡¥¤Á¤Ê¤ß¤ËRK4¤Î¸Â³¦¤ÏCFL=0.49¤°¤é¤¤¤Ê¤Î¤Ç¡¤RK3¤ÈRK4¤Î°ÂÄêÀ­¤ÏÂ礭¤¯¤ÏÊѤï¤é¤Ê¤¤¡¥

TVD¥ë¥ó¥²¥¯¥Ã¥¿(Total-Variation Diminishing Runge-Kutta)

¥ë¥ó¥²¥¯¥Ã¥¿Ë¡¤Ê¤É¤Î²òË¡¤Ï1¼¡¸µ¡¤°ìÄêÉý¥°¥ê¥Ã¥É¤Ç¤ÏTV°ÂÄê¤Ç¤¢¤ë¤¬¡¤ ¿¼¡¸µ¡¤²ÄÊÑÉý¥°¥ê¥Ã¥É¤Ç¤Ï¤É¤¦¤«¡©¤È¤¤¤¦ÌäÂ꤬¤¢¤ë¡¥ ¤³¤ì¤ËÂФ·¤Æ¡¤TVD¤òËþ¤¿¤¹¥ë¥ó¥²¥¯¥Ã¥¿¤¬TVD RK(1)¤Ç¤¢¤ë(TVD¤Ë¤Ä¤¤¤Æ¤Ï²¼»²¾È)¡¥

°ÜήÊýÄø¼°¤Î»þ´ÖÈùʬ°Ê³°¤Î¹à¤òtvdrk.eq1.gif¤È¤·¤Æ¡¤°ìÈÌŪ¤ÊRK¤Ï¡¤

tvdrk.eq2.gif

¤³¤³¤Ç¡¤tvdrk.eq3.gif¤Ç¤¢¤ë¡¥ ¾åÉÕ¤Îtvdrk.eq4.gif¤ÏRK¤Î¥¹¥Æ¥Ã¥×¤´¤È¤ÎÃæ´ÖÃͤò¼¨¤·¤Æ¤¤¤ë¡¥

¤³¤ì¤ËÂФ·¤Æ¡¤TVD RK¤Ï°Ê²¼¤Ç¤¢¤ë¡¥

tvdrk.eq5.gif

¤³¤³¤Ç¡¤

tvdrk.eq6.gif

TVD RK2

2¼¡ÀºÅÙ¤ÎTVD RK¤ÏRK¤Ë¤ª¤±¤ë½¤Àµ¥ª¥¤¥é¡¼Ë¡(RK2)¤ËÂбþ¤¹¤ë¡¥

tvdrk.eq7.gif¤Ç¡¤

tvdrk.eq8.gif

­¡¤«¤é¡¤

tvdrk.eq9.gif

­¢¤«¤é¡¤

tvdrk.eq10.gif

¤³¤³¤Ç¡¤Ä̾ï¤ÎRK¤Îtvdrk.eq11.gif¤òÍѤ¤¡¤ ¤µ¤é¤Ë¡¤tvdrk.eq12.gif¤È¤¹¤ë¤È¡¤

tvdrk.eq13.gif

¤è¤Ã¤Æ¡¤

tvdrk.eq14.gif

TVD RK2¤Ç¤Ïtvdrk.eq15.gif¤Ètvdrk.eq16.gif¤Ë¤Ä¤¤¤Æ¤Î2²ó¤ÎÁ°¿Ê¥ª¥¤¥é¡¼Ë¡¤ÎÁȤ߹ç¤ï¤»¤ÇÀ®¤êΩ¤Ã¤Æ¤¤¤ë¡¥ ¤³¤Î»ö¼Â¤ò»È¤Ã¤¿¼ÂÁõ¤ò°Ê²¼¤Ë¼¨¤¹¡¥

  1. Á°¿Ê¥ª¥¤¥é¡¼Ë¡¤Ë¤è¤êtvdrk.eq16.gif¤òµá¤á¤ë¡¥
    tvdrk.eq17.gif
  1. Á°¿Ê¥ª¥¤¥é¡¼Ë¡¤Ë¤è¤êtvdrk.eq16.gif¤«¤étvdrk.eq18.gif¤òµá¤á¤ë¡¥
    tvdrk.eq19.gif
  1. tvdrk.eq20.gif¤Ètvdrk.eq18.gif¤ÎÊ¿¶Ñ¤ò¤È¤ë¤³¤È¤Ç¡¤ºÇ½ªÅª¤ÊÃͤòÆÀ¤ë¡¥
    tvdrk.eq21.gif

TVD RK3

tvdrk.eq22.gif¤Ç¡¤

tvdrk.eq23.gif

­¡¤«¤é¡¤

tvdrk.eq24.gif

­¢¤«¤é¡¤

tvdrk.eq25.gif

¤³¤³¤Ç¡¤Ä̾ï¤ÎRK¤Îtvdrk.eq26.gif¤òÍѤ¤¡¤

tvdrk.eq27.gif

tvdrk.eq28.gif¤È¤¹¤ë¤È¡¤

tvdrk.eq29.gif

¤è¤Ã¤Æ¡¤

tvdrk.eq30.gif

TVD RK3¤Ç¤Ï3²ó¤ÎÁ°¿Ê¥ª¥¤¥é¡¼Ë¡¤ÎÁȤ߹ç¤ï¤»(tvdrk.eq15.gif¤Ètvdrk.eq16.gif¤Ètvdrk.eq31.gif¤Ë¤Ä¤¤¤Æ)¤ÇÀ®¤êΩ¤Ã¤Æ¤¤¤ë¡¥ TVD RK2¤ÈƱÍͤˡ¤¤³¤Î»ö¼Â¤ò»È¤Ã¤¿¼ÂÁõ¤ò°Ê²¼¤Ë¼¨¤¹¡¥

  1. TVD RK2¤ÈƱ¤¸¤¯2²ó¤ÎÁ°¿Ê¥ª¥¤¥é¡¼Ë¡¤Ë¤è¤êtvdrk.eq32.gif¤òµá¤á¤ë¡¥
    tvdrk.eq33.gif
  1. °Ê²¼¤ÎÆÌ·ë¹ç¤Ë¤è¤êtvdrk.eq31.gif
    tvdrk.eq34.gif
  1. tvdrk.eq31.gif¤«¤éÁ°¿Ê¥ª¥¤¥é¡¼Ë¡¤Çtvdrk.eq35.gif¤ò»»½Ð¤¹¤ë¡¥
    tvdrk.eq36.gif
  1. ºÇ½ªÅª¤Ë¡¤°Ê²¼¤ÎÆÌ·ë¹ç¤Ë¤è¤êtvdrk.eq37.gif¤ò¶á»÷¤¹¤ë¡¥
    tvdrk.eq38.gif

TVD RK4

tvdrk.eq39.gif¤Ç¡¤

tvdrk.eq40.gif

³Æ·¸¿ô¤ÎƳ½Ð¤ÏŤ¯¤Ê¤ê¤½¤¦¤Ê¤Î¤Ç¾Êά((1)»²¾È}¡¥

tvdrk.eq41.gif

TVD,TVB

TVD(Total-Variation Diminishing)(2)¤ÏÈóÀþ·ÁÊýÄø¼°¤Î¼ý«¾ò·ï¤Î¤Ò¤È¤Ä¤Ç¤¢¤ë¡¥ n¥¹¥Æ¥Ã¥×ÌܤǤÎTV(Total-Variation : Á´ÊÑÆ°)¤Ï°Ê²¼¤Î¤è¤¦¤ËÄêµÁ¤µ¤ì¤ë¡¥

tvdrk.eq42.gif

¤³¤ì¤òÎ¥»¶²½¤¹¤ë¤È¡¤

tvdrk.eq43.gif

¤È¤Ê¤ë¡¥¤½¤·¤Æ¡¤

tvdrk.eq44.gif

¤òËþ¤¿¤¹¤È¤­¡¤TV°ÂÄê¤Ç¤¢¤ë¤È¤¤¤¤¡¤¤½¤Î¿ôÃÍ·×»»¼êË¡¤ÏTVD¤È¸Æ¤Ð¤ì¤ë¡¥ ¤Þ¤¿¡¤

tvdrk.eq45.gif

¤òËþ¤¿¤¹¤È¤­¡¤TVB(Total-Variation Bounded)¤Ç¤¢¤ë¤È¤¤¤¦¡¥ ¤³¤³¤Çtvdrk.eq46.gif¤Ïtvdrk.eq47.gif¤Î¤ß¤Ë°Í¸¤¹¤ëÄê¿ô¤Ç¤¢¤ë¡¥

¥¢¥À¥à¥¹¡¦¥Ð¥·¥å¥Õ¥©¡¼¥¹Ë¡(Adams-Bashforth scheme)

adams-bashforth.eq1.gif¤Î·×»»¤Ë¡¤adams-bashforth.eq2.gif¤À¤±¤Ç¤Ê¤¯¤µ¤é¤ËÁ°¤ÎÃÍ(adams-bashforth.eq3.gif)¤ò»È¤¦¤³¤È¤Ç¹âÀºÅ٤ˤ¹¤ë¡¥ Î㤨¤Ð2¼¡ÀºÅ٤Ǥϰʲ¼¤È¤Ê¤ë(Adams-Bashforth¤Î2ÅÀ¸ø¼°)¡¥

adams-bashforth.eq4.gif

´°Á´±¢²òË¡(full implicit scheme)

¥ª¥¤¥é¡¼¤ä¥ë¥ó¥²¥¯¥Ã¥¿¤Ê¤É¤Ç¤Ï¡¤µá¤á¤¿¤¤¥¹¥Æ¥Ã¥×¤Ç¤ÎÃÍ(Î㤨¤Ðfull-implicit.eq1.gif)¤Î¤¿¤á¤Ë ¤½¤ì°ÊÁ°¤ÎÃÍ(full-implicit.eq2.gif¤Ê¤É)¤À¤±¤ò¶õ´ÖÈùʬ¹à¤ËÍѤ¤¤Æ¤¤¤¿¡¥ ¤³¤Î¤¿¤á¡¤Á°¤Î¥¹¥Æ¥Ã¥×¤Ç¤ÎÃͤ¬´ûÃΤǤ¢¤ì¤Ð¡¤Ã±¤Ë¼°¤Ë¤½¤ÎÃͤòÂåÆþ¤¹¤ë¤À¤±¤Ç·×»»¤¬²Äǽ¤Ç¤¢¤Ã¤¿¡¥ ¤³¤ì¤ËÂФ·¡¤full-implicit.eq1.gif¤ò»þ´ÖÈùʬ¹à°Ê³°¤ËÍѤ¤¤ëÊýË¡¤ò±¢²òË¡¤È¸Æ¤Ö¡¥

full-implicit.eq3.gif

»þ´ÖÈùʬ°Ê³°¤Ëfull-implicit.eq2.gif¤¬¤Ê¤¤¾ì¹ç¤ò´°Á´±¢²òË¡¤È¸Æ¤Ö¡¥ °ÜήÊýÄø¼°¤Î´°Á´±¢²òË¡¤Ë¤è¤ëº¹Ê¬¼°(Á°¿Ê¥ª¥¤¥é¡¼+É÷¾åº¹Ê¬)¤Ï¡¤

full-implicit.eq4.gif

°ì¤Ä¤Î¼°¤Ë̤Ãοô¤¬2¤Ä(full-implicit.eq5.gif)´Þ¤Þ¤ì¤Æ¤ª¤ê¡¤ÍÛ²òË¡¤Î¤è¤¦¤Ëñ½ã¤ËÂåÆþ¤À¤±¤Ç¤Ï²ò¤±¤Ê¤¤¡¥ ¤½¤Î¤¿¤á¡¤¤¹¤Ù¤Æ¤Îfull-implicit.eq6.gif¤Ë´Ø¤¹¤ë¼°¤òϢΩ¤µ¤»¤Æ²ò¤¯(ϢΩÊýÄø¼°)¡¥ ήÂÎ¥·¥ß¥å¥ì¡¼¥·¥ç¥ó¤Ç¤Ï¤Û¤È¤ó¤É¤Î¾ì¹ç¡¤Àþ·ÁϢΩÊýÄø¼°(Àþ·Á¥·¥¹¥Æ¥à)¤È¤Ê¤ë¡¥ ¤Ä¤Þ¤ê¡¤¾åµ­¤Î¼°¤ò¤¹¤Ù¤Æ¤Îfull-implicit.eq6.gif¤Ë´Ø¤·¤ÆÎ©¤Æ¤ë¤³¤È¤Ç¡¤

full-implicit.eq7.gif

¤È¤¤¤¦¹ÔÎóÊýÄø¼°¤òÆÀ¤ë¡¥¤½¤·¤Æ¤³¤ì¤òµÕ¹ÔÎó·×»»¤Ë¤è¤ê²ò¤¯¡¥

full-implicit.eq8.gif

¿ôÃÍήÂβòÀϤǤϤ³¤Î¹ÔÎófull-implicit.eq9.gif¤¬µðÂç¤Ë¤Ê¤Ã¤Æ¤·¤Þ¤¤¡¤·×»»¥³¥¹¥È¤¬Â礭¤¯¤Ê¤ë¡¥ Î㤨¤Ð¡¤3¼¡¸µ¶õ´Ö¤òfull-implicit.eq10.gif¤Î¥°¥ê¥Ã¥É¤Çʬ³ä¤·¤¿¾ì¹ç¡¤full-implicit.eq11.gif¤Î¹ÔÎó¤È¤Ê¤Ã¤Æ¤·¤Þ¤¦¡¥ ¤¿¤À¤·¡¤full-implicit.eq9.gif¤ÏÀµÄêÂоÎÁ¹ÔÎó¤Ç¤¢¤ë¤³¤È¤¬Â¿¤¯¡¤Á°½èÍýÉÕ¶¦Ìò¸ûÇÛË¡¤Ê¤É¸úΨŪ¤Ê²òË¡¤ò»È¤¦¤³¤È¤¬¤Ç¤­¤ë¡¥ ¤½¤ì¤Ç¤â¡¤¤ä¤Ï¤êÍÛ²òË¡¤ËÈæ¤Ù¤ë¤È°µÅÝŪ¤Ë·×»»»þ´Ö¤¬É¬ÍפǤ¢¤ë¡¥ °ìÊý¤Ç±¢²òË¡¤Ï¿ôÃÍŪ¤Ë°ÂÄꤷ¤Æ¤ª¤ê¡¤Â礭¤Ê¥¿¥¤¥à¥¹¥Æ¥Ã¥×¤Ç¤âȯ»¶¤¹¤ë¤³¤È¤Ê¤·¤Ë²ò¤±¤ë(CFL¾ò·ï¤Ë¤âº¸±¦¤µ¤ì¤Ê¤¤)¤¿¤á¡¤CGÍÑ¥¢¥×¥ê¥±¡¼¥·¥ç¥ó¤Ê¤É¤Ç¤Ï¤è¤¯ÍѤ¤¤é¤ì¤Æ¤¤¤ë¡¥

¥¯¥é¥ó¥¯¡¦¥Ë¥³¥ë¥½¥óË¡(Crank-Nicolson scheme)

¥¯¥é¥ó¥¯¡¦¥Ë¥³¥ë¥½¥óË¡¤Ï±¢²òË¡¤Î°ì¼ï¤Ç¤¢¤ê¡¤»þ´ÖÈùʬ°Ê³°¤Î¹à¤Ëcrank-nicolson.eq1.gif¤Ècrank-nicolson.eq2.gif¤ÎÊ¿¶ÑÃͤòÍѤ¤¤ë¡¥

crank-nicolson.eq3.gif

¥¯¥é¥ó¥¯¡¦¥Ë¥³¥ë¥½¥óË¡¤Ï2¼¡ÀºÅ٤Ǥ¢¤ê¡¤±¢²òË¡¤Ç¤¢¤ë¤Î¤Ç¹ÔÎóÊýÄø¼°¤ò²ò¤¯É¬Íפ¬¤¢¤ë¡¥

ͽ¬»Ò¡¦½¤Àµ»ÒË¡(predictor-corrector scheme)

¥¢¥À¥à¥¹¡¦¥Ð¥·¥å¥Õ¥©¡¼¥¹Ë¡¤Ê¤É¤ÎÍÛ²òË¡¤Çͽ¬»Ò¤òµá¤á¡¤±¢Åª¤ÊÊýË¡¤Çͽ¬»Ò¤ò½¤Àµ¤¹¤ë¤³¤È¤Çpredictor-corrector.eq1.gif¤òÆÀ¤ëÊýË¡¡¥ ºÇ½ªÅª¤Ë±¢²òË¡¤òÍѤ¤¤ë¤¬¡¤ÍÛ²òË¡¤Ë¤è¤ëͽ¬»Ò¤ò½é´üÃͤòÍѤ¤¤ë¤³¤È¤Ç¡¤¾¯¤Ê¤¤È¿Éü¤Ç²ò¤Ë㤷¡¤·×»»»þ´Ö¤ò¸º¤é¤¹¤³¤È¤¬¤Ç¤­¤ë¡¥


*1 A. Selle, R. Fedkiw, B. Kim, Y. Liu, J. Rossignac, "An unconditionally stable MacCormack method", J. Sci. Comput. 35(2), pp.350-371, 2008.
*2 R. MacCormack, "The effect of viscosity in hypervelocity impact cratering", AIAA Hypervelocity Impact Conference, 1969.
*3 P. Lax and B.Wendroff, "Systems of conservation laws", Commun. Pure Appl Math. 13, pp.217-237, 1960.
*4 B. P. Leonard, "A Stable and Accurate Convective Modelling Procedure Based on Quadratice Upstream Interpolation", Comput. Meths. Appl. Mech. Eng. 19, pp.59-98, 1979.
*5 T. Kawamura and K. Kuwahara, "Computation of High Reynolds Number Flow Around a Circular Cylinder with Surface Roughness", AIAA Paper 84-0340, 1984.
*6 A. Harten, B. Engquist, S. Osher and S. Chakravarthy, "Uniformly high-order accurate essentially non-oscillatory schemes III", J. Comput. Phys. 71, pp.231-303, 1987.
*7 C.-W. Shu and S. Osher, "Efficient implementation of essentially non-oscillatory shock capturing schemes", J. Comput. Phys. 77, pp.439-471, 1988.
*8 C.-W. Shu and S. Osher, "Efficient implementation of essentially non-oscillatory shock capturing schemes II", J. Comput. Phys. 83, pp.32-78, 1989.
*9 S. Osher and J. Sethian, "Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations", J. Comput. Phys. 79, pp.12-49, 1988.
*10 ÆÌ·ë¹ç¤È¤Ï°ì¼¡·ë¹çeqa_weno9.gif¤Ç¥¢¥Õ¥£¥ó·ë¹ç(eqa_weno10.gif)¡¤¤«¤Ä¡¤eqa_weno11.gif
*11 X. D. Liu, S. Osher, and T. Chan, "Weighted essentially non-oscillatory schemes", J. Comput. Phys. 115(1), pp. 200-212, 1994.
*12 G. Jiang and C.-W. Shu, "Efficient implementation of weighted ENO schemes", J. Comput. Phys. 126, pp.202-228, 1996.
*13 G. Jiang and D. Peng, "Weighted ENO Schemes for Hamilton Jacobi Equations", SIAM J. Sci. Comput. 21, pp.2126-2143, 2000.
*14 T. Dupont, Y. Liu, "Back and forth error compensation and correction methods for removing errors induced by uneven gradients of the level set function", J. Comput. Phys. 190(1) (2003) pp.311-324.
*15 B.-M. Kim, Y. Liu, I. Llamas, J. Rossignac, "Using BFECC for fluid simulation", Eurographics Workshop on Natural Phenomena 2005, 2005.
*16 B.-M. Kim, Y. Liu, I. Llamas, J. Rossignac, "Advections with significantly reduced dissipation and diffusion", IEEE Trans. Vis. Comput. Graph. 13(1), pp.135-144, 2007.
*17 H. Takewaki and T. Yabe, "The cubic-interpolated pseudo particle (CIP) method: application to nonlinear and multi-dimensional hyperbolic equations", J. Comput. Phys. 70, pp.355-372, 1987.
*18 T. Yabe and E. Takei, "A New Higher-Order Godunov Method for General Hyerbolic Equations", Journal of the Physical Society of Japan, 57, pp.2598-2601, 1988.
*19 T. Yabe, T. Ishikawa, Y. Kadota and F. Ikeda, "A Multidimensional Cubic-Interpolated Pseudoparticle (CIP) Method without Time Splitting Technique for Hyperbolic Equations", Journal of The Physical Society of Japan, 59, pp.2301-2304, 1990.
*20 Ä󰯤µ¤ì¤¿Åö½é¤ÏCubic Interpolated Pseudo-particle Scheme¤Îά¤À¤Ã¤¿¤¬¡¤¤½¤Î¸å¤µ¤Þ¤¶¤Þ¤Ê²þÎɼêË¡¤¬Ä󰯤µ¤ì¡¤3¼¡(Cubic)¿¹à¼°°Ê³°¤âÍѤ¤¤ë¤è¤¦¤Ë¤Ê¤Ã¤¿¤Î¤Ç¡¤Constrained Interpolation Profile scheme¤ËÊѹ¹¤µ¤ì¤¿¡¥
*21 F. Xiao, T. Yabe, and T. Ito, "Constructing oscillation preventing scheme for advection equation by rational function", Comput. Phys. Commun. 93, pp.1-12, 1996.
*22 F. Xiao, T. Yabe, G. Nizam and T. Ito, "Constructing a multi-dimensional oscillation preventing scheme for the advection equation by a rational function", Comput. Phys. Commun. 94, pp.103-118, 1996.
*23 T. Yabe and F. Xiao "Description fo Complex and Sharp Interface during Shock Wave Interaction with Liquid Drop", Journal of the Physical Society of Japan, 62, pp.2537-2540, 1993.
*24 ÃÓü¾¼É×, ¾Ó˯, "Êݸ·¿¼«Í³É½ÌÌÊá³Í¥¹¥­¡¼¥à¤È¸Ç±Õµ¤3Áêή¤Ø¤ÎŬÍÑ", ÆüËܵ¡³£³Ø²ñ2002ǯÅÙǯ¼¡Âç²ñ, 2002
*25 M. Fujisawa and K. T. Miura, "Animation of ice melting phenomenon based on thermodynamics with thermal radiation", Proc. GRAPHITE2007, pp.249-256, 2007.
*26 R. Tanaka, T. Nakamura, T. Yabe, "Constructing exactly conservative scheme in a non-conservative form", Comput. Phys. Commun. 126(3), pp.232-243, 2000.
*27 T. Yabe, R. Tanaka, T. Nakamura, F. Xiao, "An exactly conservative semi-Lagrangian scheme (CIP-CSL) in one dimension", Mon. Weather Rev. 129, pp.332-344, 2001.
*28 T. Nakamura, R. Tanaka, T. Yabe and K. Takizawa, "Exactly Conservative Semi-Lagrangian Scheme for Multi-dimensional Hyperbolic Equations with Directional Splitting Technique", J. Comput. Phys. 174, pp.171-207, 2001.
*29 K. Takizawa, T. Yabe, T. Nakamura, "Multi-dimensional semi-Lagrangian scheme that guarantees exact conservation", Comput. Phys. Commun. 148(2), pp.137-159, 2002.
*30 F. Xiao, T. Yabe, "Completely conservative and oscillationless semi-Lagrangian schemes for advection transportation", J. Comput. Phys. 170(2), pp.498-522, 2001.
*31 F. Xiao, "Unified formulation for compressible and incompressible flows by using multi-integrated moments I: one-dimensional inviscid compressible flow", J. Comput. Phys. 195, pp.629-654, 2004
*32 F. Xiao, R. Akoh and S. Ii, "Unified formulation for compressible and incompressible flows by using multi-integrated moments II: Multi-dimensional version for compressible and incompressible flows", J. Comput. Phys. 213, pp.31-56, 2006.
*33 J. H. Hyman, "Accurate monotonicity preserving cubic interpolations", SIAM Journal on Scientific Computing, 4, pp.645-654, 1983.
*34 A. Harten and S. Osher, "Uniformly high order accurate non-oscillatory schemes. I", SIAM Journal on Numerical Analysis, 24, pp.279-309, 1987.
*35 P. Collela and P. R. Woodward, "The piecewise parabolic method (PPM) for gas-dynamical simulations", J. Comput. Phys. 54, pp.174-201, 1984
*36 M. Lentine, J. T. Gretarsson and R. Fedkiw, "An unconditionally stable fully conservative semi-Lagrangian method", J. Comput. Phys. 230(8), pp.2857-2879, 2011
(1)  C.-W. Shu and S. Osher, "Efficient implementation of essentially non-oscillatory shock capturing schemes", J. Comput. Phys. 77, pp.439-471, 1988.
(2)  A. Harten, "High resolution schemes for hyperbolic conservation laws", J. Comput. Phys. 49, pp.357-393, 1983.

źÉÕ¥Õ¥¡¥¤¥ë: fileeqa_phii.gif 1437·ï [¾ÜºÙ] fileeqa_advec_equation1.gif 1807·ï [¾ÜºÙ]

¥È¥Ã¥×   ÊÔ½¸ Åà·ë º¹Ê¬ ÍúÎò źÉÕ Ê£À½ ̾Á°Êѹ¹ ¥ê¥í¡¼¥É   ¿·µ¬ °ìÍ÷ ¸¡º÷ ºÇ½ª¹¹¿·   ¥Ø¥ë¥×   ºÇ½ª¹¹¿·¤ÎRSS
Last-modified: 2022-11-30 (¿å) 13:48:12