Navier-StokesÊýÄø¼°¤Ç¤Î°Üή¹à (u¡¦¢¦)u ¤Ë¤Ä¤¤¤Æ
°ÜήÊýÄø¼°†°ÜήÊýÄø¼° ¶õ´ÖÈùʬ¤ÎÎ¥»¶²½†É÷¾åº¹Ê¬(Upwind differencing)†°ÜήÊýÄø¼°¤Î»þ´ÖÈùʬ¤òÁ°¿Ê¥ª¥¤¥é¡¼Ë¡¤ÇÎ¥»¶²½¤¹¤ë¤È¡¤ ![]() 1¼¡¸µ¤Î¾ì¹ç¤ò¹Í¤¨¤ë¡¥¥°¥ê¥Ã¥É ![]() ¤³¤³¤Ç¡¤ É÷¾åº¹Ê¬¤Ç¤Ï¤½¤Î̾¤ÎÄ̤ꡤÉ÷¾å¦¤ÎÃͤò»È¤Ã¤Æº¹Ê¬¤ò¹Ô¤¦1¼¡ÀºÅÙ¤ÎÎ¥»¶²½Ë¡¤Ç¤¢¤ë¡¥
1¼¡¸µ¤Î¾ì¹ç¡¤ ![]() É÷¾åº¹Ê¬¤ÏCFL(Courant-Friedreichs-Lewy)¾ò·ï¤òËþ¤¿¤·¤Æ¤¤¤ì¤Ð°ÂÄê¤Ç¤¢¤ë¡¥ CFL¾ò·ï¤Ë¤è¤ë¥¿¥¤¥à¥¹¥Æ¥Ã¥×Éý¤ÎÀ©¸Â¤Ï¡¤ ![]() ¥¿¥¤¥à¥¹¥Æ¥Ã¥×Éý¤ÏÄ̾盧¤ì¤è¤ê¤â¤µ¤é¤Ë¾®¤µ¤¤¿ô¤òÍѤ¤¤¿Êý¤¬¤è¤¤¡¥
·¸¿ô:CFL¿ô(CFL number)¤ò ![]() ¤³¤³¤Ç¡¤ ¿¶Æ°¤È¿ôÃͳȻ¶†É÷¾åº¹Ê¬¤ÎÎ¥»¶¼°( ![]()
¤µ¤Æ¡¤¾å¼°¤ÎÈùʬ¤ò²¼¤Ç½Ò¤Ù¤ëÃæ¿´º¹Ê¬¤ÇÎ¥»¶²½¤·¤Æ¤ß¤ë¡¥ ![]() É÷¾åº¹Ê¬¤ÏÃæ¿´º¹Ê¬¤Ë³È»¶¹à¤ò²Ã¤¨¤¿¤â¤Î¤Ç¤¢¤ë¤³¤È¤¬Ê¬¤«¤ë¡¥ Ãæ¿´º¹Ê¬¤Ç¤ÏÈó¾ï¤ËÂ礤ʿ¶Æ°¤¬È¯À¸¤¹¤ë¡¥ ¤½¤Î¿¶Æ°¤ò³È»¶¹à¤Ë¤è¤êÍÞ¤¨¤Æ¤¤¤ë¤Î¤¬É÷¾åº¹Ê¬¤Ç¤¢¤ë¡¥ ¤³¤Î¿¶Æ°¤òÍÞ¤¨¤ë¤È¤¤¤¦¹Í¤¨Êý¤Ï½ÅÍפǤ¢¤ë¡¥ ¤è¤ê¹â¼¡¤Î´Ø¿ô¤ò»È¤Ã¤ÆÊä´Ö¤¹¤ë¤³¤È¤Ç¿¶Æ°¤òÍÞ¤¨¤ë¤Î¤¬¡¤Lax-Wendroff¤äQUICK,QUICKEST,²Ï¼¡¦·¬¸¶¥¹¥¡¼¥à¤Ê¤É¤Ç¡¤ 2³¬¡¤3³¬¤ÎÈùʬ¤ò»È¤Ã¤ÆÍÞ¤¨¤ë¤Î¤¬ENO¤äWENO¤Ç¤¢¤ë¡¥ ¤³¤ì¤é¤ËÂФ·¤Æ¡¤¸µ¤Î·Á¾õ¤òÊÝ»ý¤¹¤ë¤È¤¤¤¦¹Í¤¨Êý¤Ë´ð¤Å¤¡¤°Û¤Ê¤ë¥¢¥×¥í¡¼¥Á¤ò¤È¤ë¤Î¤¬CIPË¡,RCIPË¡¤Ê¤É¤Ç¤¢¤ë¡¥ ¤Á¤Ê¤ß¤ËRCIPË¡¤Ç¤Ï¿ôÃͳȻ¶¤¬È¯À¸¤·¤Æ¤·¤Þ¤¦¤Î¤Ç¡¤¤³¤ì¤òÍÞ¤¨¤ë¤¿¤á¤ÎSTAA¼êË¡¤Ç¤ÏµÕ¤Ë¿ôÃͳȻ¶¹à¤ò°ú¤¯¤³¤È¤Ç³È»¶¤òÍÞ¤¨¤Æ¤¤¤ë¡¥
Ãæ¿´º¹Ê¬(Central differencing)†Î®¤ì¤Î®ÅÙ ![]() Á°¿Ê¥ª¥¤¥é¡¼Ë¡¤ÈÁȤ߹ç¤ï¤»¤ë¤È¡¤ ![]()
Lax-WendroffË¡†Lax-WendroffË¡(¤Þ¤¿¤Ï¡¤¥é¥¤¥¹(Leith)Ë¡)*3¤Ç¤ÏÀþ·ÁÊä´Ö¤ÎÂå¤ï¤ê¤Ë2¼¡Â¿¹à¼°¤ò»È¤Ã¤¿Êä´Ö¤Ç¶á»÷¤ò¹Ô¤¦¡¥2¼¡Â¿¹à¼°¤Î·¸¿ô¤òµá¤á¤ë¤¿¤á¤Ë¡¤¥°¥ê¥Ã¥Éi¤È¤½¤ÎξÎÙ(i-1,i+1)¤Î3¤Ä¤ÎÃÍ 2¼¡Â¿¹à¼°¤Ï¡¤ ![]() ¤³¤³¤Ç³Æ·¸¿ô¤Ï¡¤ ![]()
![]() É÷¾åº¹Ê¬¤ÈƱÍͤËÃæ¿´º¹Ê¬¤Ë³È»¶¹à¤ò²Ã¤¨¤¿¤â¤Î¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡¥³È»¶¹à¤Î·¸¿ô¤¬°Û¤Ê¤ë¤Î¤¬É÷¾åº¹Ê¬¤È¤Î°ã¤¤¤Ç¤¢¤ë¡¥
QUICK(Quadratic Upstream Interpolation for Convective Kinematics)†QUICK*4¤Ï ![]() ¤³¤ì¤ò°ÜήÊýÄø¼°¤ÎÎ¥»¶²½¤ËÍѤ¤¤ë¤È¡¤ ![]()
QUICKEST(QUICK with estimated streaming terms)†QUICKEST(QUICK with estimated streaming terms)¤ÏLax-Wendroff¤Î3¤Ä( ![]()
²Ï¼¡¦·¬¸¶¥¹¥¡¼¥à(Kawamura-Kuwabara scheme)†4¼¡ÀºÅÙ¤ÎÃæ¿´º¹Ê¬( 4¼¡ÀºÅÙ¤ÎÃæ¿´º¹Ê¬¤Ï°Ê²¼¡¥ ![]() 4³¬Èùʬ¹à¤Îº¹Ê¬¼°¤Ï¡¤ ![]() (4³¬Èùʬ¤Îº¹Ê¬¼°¤ÎƳ½Ð¤Ï4³¬Èùʬ¤ò»²¾È)¡¥ 4³¬Èùʬ¹à¤Ë·¸¿ô ![]()
![]()
ENO(Essentially Non-Oscillatory polynomial interpolation)†ENO(Essentially Non-Oscillatory polynomial interpolation)¤ÏÉ÷¾åº¹Ê¬¤ò²þÎɤ·¡¤ 3¼¡Â¿¹à¼°¤Î·Á¤Ç¶á»÷¤¹¤ë¤³¤È¤Ç3¼¡ÀºÅÙ¤ò¼Â¸½¤·¤¿ÊýË¡¤Ç¤¢¤ë¡¥ ENO¤ÎºÇ½é¤Î¥¢¥¤¥Ç¥¢¤Ï *6 ¤ÇÄ󰯤µ¤ì¡¤ *7, *8 ¤Ç¿ôÃÍ·×»»¤ËŬÍѤµ¤ì¡¤ *9 ¤ÇHamilton-Jacobi(HJ)ÊýÄø¼°¤ØÅ¬ÍѤµ¤ì¤¿(HJ ENO)¡¥ °ÜήÊýÄø¼°¤ÏHJÊýÄø¼°¤Ç¤¢¤ë¤Î¤Ç¡¤¤³¤³¤«¤é¤Ï¡¤HJ ENO¤Ë¤Ä¤¤¤ÆÀâÌÀ¤¹¤ë¡¥ HJ ENO¤Î¼°¤ò½Ò¤Ù¤ëÁ°¤Ë¡¤½àÈ÷¤È¤·¤Æº¹Ê¬¼°¤òÄêµÁ¤·¤Æ¤ª¤¯¡¥
![]() ¤È¤Ê¤ë¡¥¤³¤³¤Ç¡¤i¤Ï¥°¥ê¥Ã¥ÉÈÖ¹æ(ºÂɸÃÍ 1³¬º¹Ê¬¤Ï¥°¥ê¥Ã¥É´Ö(i-1/2¤Èi+1/2)¤ÇÄêµÁ¤µ¤ì¤ë¡¥ ![]() ![]() 2³¬º¹Ê¬¤Ïi-1/2¤Èi+1/2¤Ç¤Î1³¬º¹Ê¬Ãͤò»È¤Ã¤Æ¡¤i¤ÇÄêµÁ¤µ¤ì¤ë¡¥ ![]() ƱÍͤË3³¬º¹Ê¬¤Ï¡¤ ![]() ![]() ENO¤Ç¤Ï3¼¡Â¿¹à¼°¤Ë¤è¤ê ![]() ¤³¤³¤Ç¡¤ ![]()
¤³¤ì¤é¤Ë¤è¤Ã¤Æ¡¤ ![]() ¤Ë¤è¤ê
WENO(Weighted Essentially Non-Oscillatory polynomial interpolation)†ENO¤ò²þÎɤ·¤Æ¡¤½Å¤ßÉդʿ¶Ñ¤ò¤È¤ë¤³¤È¤Ç5¼¡ÀºÅÙ¤ò¼Â¸½¤·¤¿¤Î¤¬WENO¤Ç¤¢¤ë¡¥ 3¼¡ÀºÅÙ¤ÎENO¤Ç¤Ï ![]() 1+2+4, 1+2+5, 1+3+6, 1+3+7¤Î4¥Ñ¥¿¡¼¥ó¤Ë¤Ê¤ë¤¬¡¤ °Ê²¼¤Ë¼¨¤¹¤è¤¦¤Ë1+2+5¤È1+3+6¤¬Æ±¤¸¤Ê¤Î¤Ç¡¤ÁȤ߹ç¤ï¤»¤Ï3¥Ñ¥¿¡¼¥ó¤Ë¤Ê¤ë¡¥ ¤½¤ì¤¾¤ì¤µ¤é¤ËŸ³«¤·¤Æ¦Õi¤Î¼°¤Ë¤¹¤ë¡¥ ![]() º¹Ê¬¤ò ![]() ENO¶á»÷¤Ï·ë¶É¤³¤Î3¤Ä¤Î¥Ñ¥¿¡¼¥ó¤Ë½¸Ì󤵤ì¤ë¡¥
¤³¤ì¤é¤ÎÆâ¤É¤ì¤«¤¬¾õ¶·¤Ë±þ¤¸¤ÆÍѤ¤¤é¤ì¤ë¡¥
WENO(Weighted ENO)¤Ï¤½¤Î̾¤ÎÄ̤ꡤ¤³¤ì¤é3¤Ä¤ÎÆÌ·ë¹ç
*10
¤Ç ![]() ¤³¤³¤Ç¡¤ ÌäÂê¤È¤Ê¤ë¤Î¤Ï
![]() Àè¤Û¤É¤Î½Å¤ß¤ÎÁȤ߹ç¤ï¤»( ![]() ¤³¤³¤Ç¡¤ ![]()
![]() ¤³¤ì¤é¤«¤é¡¤ ![]() ¤Ë¤è¤ê
¥»¥ß¥é¥°¥é¥ó¥¸¥å(semi-Lagrangian)Ë¡†CGʬÌî¤Ç¤â¤â¤Ã¤È¤â¥Ý¥Ô¥å¥é¡¼¤ÊÊýË¡¡¥²¼¿Þ¤Î¤è¤¦¤Ë·×»»ÅÀx¤«¤é-uÊý¸þ¤Ë¦¤t¤À¤±¥Ð¥Ã¥¯¥È¥ì¡¼¥¹¤·¤Æ¡¤¤½¤Î°ÌÃ֤ǤήÅÙ¾ìu(x_bt, t)¤ò¼¡¤Î¥¹¥Æ¥Ã¥×¤Î®ÅÙ¾ìu(x, t+¦¤t)¤È¤¹¤ëÊýË¡¡¥²¼¿Þ¤Ç¤Ï¥Ð¥Ã¥¯¥È¥ì¡¼¥¹¤Ë1¼¡´Ø¿ô¤òÍѤ¤¤Æ¤¤¤ë¡¥ ¤³¤ÎÊýË¡¤ÏÂ礤ʥ¿¥¤¥à¥¹¥Æ¥Ã¥×Éý¤Ç¤â°ÂÄꤷ¤Æ·×»»¤Ç¤¤ë¤Î¤¬Âç¤¤ÊÆÃħ¤Ç¤¢¤ë¡¥ ¥»¥ß¥é¥°¥é¥ó¥¸¥åË¡¤Ç¤Ï¥Ð¥Ã¥¯¥È¥ì¡¼¥¹¤·¤¿°ÌÃ֤ǤÎÃͤò¼þ°Ï¤ÎÃͤò»È¤Ã¤ÆÊä´Ö¤·¤Ê¤±¤ì¤Ð¤Ê¤é¤Ê¤¤¡¥ °ìÈÖ´Êñ¤Ê¤Î¤ÏÀþ·ÁÊä´Ö¤òÍѤ¤¤ëÊýË¡¤Ç¤¢¤ë¡¥¤¿¤À¤·Àþ·ÁÊä´Ö¤Ï1¼¡ÀºÅ٤Ǥ¢¤ê¡¤¾åµ¤ÎÉ÷¾åº¹Ê¬¤ÈƱ¤¸¤°¤é¤¤³È»¶¤¬È¯À¸¤¹¤ë¡¥ ¤è¤ê¹âÀºÅÙ¤ÊÊä´ÖË¡¤òÍѤ¤¤ë¤³¤È¤Ç³È»¶¤òÍÞ¤¨¤ë¤³¤È¤¬¤Ç¤¤ë¡¥Î㤨¤Ð¡¤¾åµ¤ÎENO¤äWENO¡¤²¼µ¤Ç¼¨¤¹ÊýË¡¤Ê¤É¤Ç¤¢¤ë¡¥
BFECC(Back and Forth Error Compensation and Correction)†BFECC¤ÏSemi-LagrangianË¡¤Ë¤ª¤¤¤Æ¥Ð¥Ã¥¯¥È¥ì¡¼¥¹¤¹¤ëºÝ¤Ë¡¤¥Õ¥©¥ï¡¼¥É¥È¥ì¡¼¥¹¤Ë¤è¤ê¸íº¹¤òµá¤á¡¤ ¤½¤Î¸íº¹¤ò½¤Àµ¤¹¤ë¤³¤È¤Ç¹âÀºÅ٤˰Üή¤ò¹Ô¤¦ÊýË¡¤Ç¤¢¤ë¡¥ BFECC¤ÎºÇ½é¤Î¥¢¥¤¥Ç¥¢¤Ï *14 ¤ÇÄ󰯤µ¤ì¡¤ 2005ǯ¤ËCGʬÌî¤Ç°ÜήÊýÄø¼°¤ØÅ¬ÍѤµ¤ì¤¿ *15, *16¡¥ Semi-LagrangianË¡¤Î¥Ð¥Ã¥¯¥È¥ì¡¼¥¹¤Ë¤è¤ë ![]() L¤ÏľÀþ¤ò»È¤Ã¤¿1¼¡ÀºÅ٤ΥХ寥ȥ졼¥¹¡¤u¤Ï®ÅÙ¾ì¤òɽ¤¹¡¥ ![]() ¤³¤³¤Ç¡¤ ![]()
BFECC¤Î¼°¤ò¾å¤Î¿Þ¤ò»È¤Ã¤ÆÀâÌÀ¤¹¤ë¡¥ ![]() ¤È¤Ê¤ë¡¥¾å¼°¤«¤é¡¤¸íº¹e¤Ï°Ê²¼¤Î¤è¤¦¤Ëµá¤á¤é¤ì¤ë¡¥ ![]() ¤è¤êÀµ³Î¤Ê ![]()
MacCormack†CIPË¡(Constrained Interpolation Profile scheme)†¹â¼¡Â¿¹à¼°¤òÍѤ¤¤¿Êä´ÖË¡¤Ç¤ÏÊä´Ö¼°¤òÆÀ¤ë¤¿¤á¤Ë¤è¤ê¿¤¯¤Î¥°¥ê¥Ã¥É¤òɬÍפȤ¹¤ë¡¥Î㤨¤Ð¡¤ENO,WENO¤À¤È¼«¿È¤â´Þ¤á¤Æ6¥°¥ê¥Ã¥É(ENO¤Ç¼ÂºÝ¤ËÍѤ¤¤é¤ì¤ë¤Î¤Ï4¥°¥ê¥Ã¥É)¤ÎÃͤ¬É¬Íס¥É÷¾åº¹Ê¬¤À¤È2¥°¥ê¥Ã¥É¤Ç¤¢¤Ã¤¿¤³¤È¤ò¹Í¤¨¤ë¤È3ÇܤˤʤäƤ¤¤ë¡¥¤³¤ì¤ÏÅöÁ³¤Î¤³¤È¤Ç¡¤¹â¼¡Â¿¹à¼°¤Î·¸¿ô¤òÆÀ¤ë¤¿¤á¤Ë¤Ï¿¤¯¤Î´Ø¿ôÃͤòɬÍפȤ¹¤ë¤«¤é¤Ç¤¢¤ë¡¥¤³¤Î¤è¤¦¤ËÍѤ¤¤ë¥°¥ê¥Ã¥É¤¬Áý¤¨¤ë¤È¡¤ÆÃ¤Ë¶³¦ÉÕ¶á¤Ç¤Î½èÍý¤¬Æñ¤·¤¯¤Ê¤Ã¤Æ¤¯¤ë¡¥¤³¤ì¤ËÂФ·¤Æ¡¤É÷¾åº¹Ê¬¤ÈƱÍͤË2¥°¥ê¥Ã¥É¤Î¤ß¤òÍѤ¤¤Ä¤Ä¡¤¸ûÇÛÃͤòÍøÍѤ¹¤ë¤³¤È¤ÇµÞ·ã¤ËÊѲ½¤¹¤ë´Ø¿ô¤Ç¤âÂбþ¤·¤¿¤Î¤¬CIPË¡(Constrained Interpolation Profile scheme)*17*18*19¤Ç¤¢¤ë*20¡¥ CIPË¡¤Î´ðËÜŪ¤Ê¥¢¥¤¥Ç¥¢¤Ï¡¤°Üή¼°¤òx¤ÇÈùʬ¤·¤¿¤È¤¡¤¤½¤ÎƳ´Ø¿ô ![]() ¥°¥ê¥Ã¥É¾å¤Î4¹´Â«¾ò·ï ![]() ¤³¤Î¼êË¡¤ÏÈó¾ï¤Ë´Êñ¤Ë¸«¤¨¤ë¤¬¡¤¤½¤Î¸ú²Ì¤ÏÈó¾ï¤ËÎɹ¥¤Ç¤¢¤ë¡¥ÆÃ¤Ë¶ë·ÁÇȤΤ褦¤ËµÞ·ã¤ËÊѲ½¤¹¤ëÆÃħ¤ò»ý¤Ä´Ø¿ô¤ò°Üή¤µ¤»¤¿¾ì¹ç¤Ç¤â¡¤¤½¤Î·Á¾õ¤ò°Ý»ý¤·¤¿¤Þ¤Þ°Üή¤µ¤»¤ë¤³¤È¤¬¤Ç¤¤ë¡¥
RCIPË¡(Rational Constrained Interpolation Profile scheme)†ÍÍý´Ø¿ô¤ò»È¤Ã¤¿CIPË¡¡¥ CIPË¡¤Î·çÅÀ¤Ï´Ø¿ô¤ò°Üή¤µ¤»¤ë¤È¤¡¤¼ã´³¤Î¥ª¡¼¥Ð¡¼¥·¥å¡¼¥È¤¬¤Ç¤ë¤³¤È¤Ç¤¢¤ë¡¥ ¤³¤Î¥ª¡¼¥Ð¡¼¥·¥å¡¼¥È¤Ï°Üή¤¬¿Ê¤ó¤Ç¤âÂ礤¯¤Ï¤Ê¤é¤Ê¤¤¤¿¤áÌäÂ꤬¤Ê¤¤¤è¤¦¤Ë»×¤¨¤ë¤¬¡¤ ¿å¤È¶õµ¤¤ÎÆóÁêή¤Ê¤É¡¤·×»»¤·¤¿¤¤ÊªÍýÎ̤κ¹¤¬Èó¾ï¤ËÂ礤¤¾ì¹ç¤Ë¡¤ ¾®¤µ¤Ê¥ª¡¼¥Ð¡¼¥·¥å¡¼¥È¤¬Â礤ÊÌäÂê¤È¤Ê¤ë¡¥ RCIPË¡ *21, *22 ¤Ï¤³¤ÎÌäÂê¤ò²ò·è¤¹¤ë¡¥ RCIPË¡¤ÏCIPË¡¤Î3¼¡´Ø¿ô¤ÎÂå¤ï¤ê¤ËÍÍý´Ø¿ô ![]() ¤òÍѤ¤¤ë¡¥
¤³¤³¤Ç¡¤ ![]() ¤³¤³¤Ç¡¤ ![]() RCIPË¡°Ê³°¤Ë¤â¡¤TangentÊÑ´¹¤òÍѤ¤¤ë¤³¤È¤Ç ¥ª¡¼¥Ð¡¼¥·¥å¡¼¥È¤òÍÞ¤¨¤ëÊýË¡¤âÄ󰯤µ¤ì¤Æ¤¤¤ë *23¡¥ TangentÊÑ´¹¤òÍѤ¤¤¿¼êË¡¤Ç¤ÏʪÂγ¦Ì̤¬¥·¥ã¡¼¥×¤ËÊݤ¿¤ì¤ë¤È¤¤¤¦ÆÃħ¤ò»ý¤Ä¡¥ ¤³¤ì¤Ï¿ôÃÍήÂη׻»¾å¤ÏÈó¾ï¤ËͱפǤ¢¤ë¤¬¡¤ ¥°¥é¥Õ¥£¥Ã¥¯¥¹¤ÇÍѤ¤¤¿¾ì¹ç¡¤¥°¥ê¥Ã¥É²òÁüÅ٤ˤè¤Ã¤Æ¤Ï ±ÕÂÎɽÌ̤¬¤¢¤Þ¤ê³ê¤é¤«¤Ë¤Ê¤é¤º¡¤ÊݸÀ¤âÊݾڤµ¤ì¤Ê¤¤¡¥ RCIPË¡¤Ë¤è¤ëÌ©Åٴؿô¤Î°Üή¤Ç¤Ï¡¤³¦Ì̤òɽ¤¹0¤«¤é1¤Ø¤ÎÊѲ½Éôʬ¤¬³È»¶¤·¡¤ ´Ø¿ô¤Î·¹¤¤¬¤Ê¤À¤é¤«¤Ë¤Ê¤ë¡¥ ¤³¤Î³ê¤é¤«¤Ê³¦Ì̤ÏCG¤Ç¤ÎÍøÍѤˤª¤¤¤Æ¤ÏÈþ¤·¤¤¥ì¥ó¥À¥ê¥ó¥°·ë²Ì¤òÀ¸¤à¤¬¡¤ ¥·¥ß¥å¥ì¡¼¥·¥ç¥ó¤Ç¤Ï¿ôÃÍŪ¤ÊÉÔ°ÂÄêÀ¤ò°ú¤µ¯¤³¤¹¡¥ Ì©Åٴؿô¤ÎÂÎÀÑ°ÜÆ°¤Ë¤è¤ëSTAA¼êË¡ *24 ¤ò»È¤¦¤³¤È¤Ç¡¤ ³¦Ì̳Ȼ¶¤òÍÞÀ©¤¹¤ë¤³¤È¤¬¤Ç¤¤ë¡¥ ¤Þ¤¿¡¤³È»¶¤ò¤¢¤ëÄøÅÙ¤ÎÉý¤ÇÀ©¸æ¤¹¤ëÊýË¡ *25 ¤â¤¢¤ë¡¥
CIP-CSLË¡†CIPË¡¤Ç¤Ï³Ê»Òi¤Î¥×¥í¥Õ¥¡¥¤¥ë CIP-CSL4†CIP-CSL4Ë¡*26¡¤¤Ç¤Ï¡¤CIPË¡¤Î4¹´Â«¾ò·ï¤Ë´Ø¿ô ![]() ¤Ä¤Þ¤ê¡¤ ![]() ¤Î5¹´Â«¾ò·ï¤òËþ¤µ¤»¤ë¤¿¤á¤Ë°Ê²¼¤Î4¼¡Â¿¹à¼°¤ò¥×¥í¥Õ¥¡¥¤¥ë¤ËÍѤ¤¤ë¤Î¤¬ CIP-CSL4Ë¡¤Ç¤¢¤ë¡¥ ![]() ¤³¤³¤Ç¡¤ 5¹´Â«¾ò·ï ![]() CIPË¡¤Ç¤Ï»»½Ð¤·¤¿·¸¿ô
![]() ¤³¤³¤Ç¡¤ ![]() ¤Ç¤¢¤ë¡¥ CIP-CSL2†CIP-CSL2Ë¡*27,*28,*29¤Ï¡¤
ÃÍ ![]() $D$¤ÎÈùʬ ![]() ¤³¤ì¤Ï1¼¡¸µ¤Î°ÜήÊýÄø¼°¤ÈƱ¤¸¤Ç¤¢¤ê¡¤
CIPË¡¤Ç¤Î ³Ê»ÒÅÀiÆâ¤Ç¤Î ![]()
![]() CIPË¡¤Ë¤ª¤±¤ë¶õ´ÖÈùʬÃÍg¤Ï ![]()
![]() ¤Þ¤¿¡¤ ![]() ¤³¤ì¤é¤Î¾ò·ï¤Ë¤è¤ê·¸¿ô ![]()
![]() CIP-CSL3†CIP-CSL3Ë¡*30,*31,*32¤Ï¡¤¥°¥ê¥Ã¥É¥»¥ë[ CIP-CSL3Ë¡¤Ë¤è¤ë°Üή¹à¤Î²òË¡¤Ç¤Ï¡¤¤Þ¤º¡¤n¥¹¥Æ¥Ã¥×¤Ç¤ÎÃÍ ![]() ¤Ç¤¢¤ë¡¥ °Üή®ÅÙ¾ì¤ÎÊý¸þ¤Ë¤è¤ê°Ê²¼¤ÎÊä´Ö¤ò»È¤¤Ê¬¤±¤ë¡¥ ![]() ¤½¤·¤Æ¡¤ ![]() º¸Â¦Í×ÁÇ ![]() ![]()
![]() ¤³¤³¤Ç¡¤ ![]() ¤È¤Ê¤ë¡¥
¤Þ¤¿¡¤ÀÑʬÃÍ ![]() ¤³¤³¤Ç¡¤ ![]() ¤³¤ì¤é¤Ë¤è¤ê»»½Ð¤·¤¿ ![]() ¤Ç¤¢¤ë¡¥ slope
ÂÎÀÑÊݸ¤ò³Î¤«¤á¤ë¤¿¤á¤ËSin®ÅÙ¾ì¤Ç°Üή¤µ¤»¤¿·ë²Ì¤ò¼¨¤¹¡¥ ¶ë·ÁÇÈ(0.25 < x < 0.75¤Ç1¡¤¤½¤ì°Ê³°¤Ç0)¤òSin®ÅÙ¾ì(u=sin(¦Ðx/5))¤Çt=5¤Þ¤Ç°Üή¤µ¤»¤¿·ë²Ì¤ò¼¨¤¹¡¥¥°¥ê¥Ã¥É²òÁüÅÙN=128, ¥·¥ß¥å¥ì¡¼¥·¥ç¥ó¶õ´Ö¤ÎÂ礤µL=5.0¡¤¥°¥ê¥Ã¥ÉÉý¦¤x=L/N¡¤¥¿¥¤¥à¥¹¥Æ¥Ã¥×Éý¦¤t=0.1*¦¤x/u¤È¤·¤¿¡¥ÀĤ¤Àþ¤Ï®Åپ졤³¥¿§¤ÎºÙ¤¤Àþ¤Ï1É䴤ȤÎÍúÎò¤ò¼¨¤·¤Æ¤¤¤ë¡¥ Êݸ·Ï¥»¥ß¥é¥°¥é¥ó¥¸¥åË¡(Conservative Semi-Lagrangian scheme)†Êݸ·Ï¥»¥ß¥é¥°¥é¥ó¥¸¥åË¡*36¤Ï¡¤¥»¥ß¥é¥°¥é¥ó¥¸¥åË¡¤Î½Å¤ß¤òÀµµ¬²½¤¹¤ë¤³¤È¤Ç ÂÎÀÑÊݸ¤ò¼Â¸½¤·¤¿°Üήˡ¤Ç¤¢¤ë¡¥ ¥¹¥«¥é¡¼ÎÌ ![]() Ì©ÅÙ ![]() °ÜήÊýÄø¼°¡ß ![]() ÀѤÎÈùʬ¤Îˡ§( ![]() ¤³¤³¤Ç¡¤ ¥°¥ê¥Ã¥ÉÃæ¿´ºÂɸ¤ò ![]() ¤³¤³¤Ç¡¤ ËÜÍ衤´°Á´¤Ë¼ÁÎ̤¬Êݸ¤µ¤ì¤ë¤Ê¤é¤Ð¤É¤Î¥°¥ê¥Ã¥É¤Ë¤ª¤¤¤Æ¤â¡¤
ºÇ½ªÅª¤ËÀµµ¬²½¤·¤¿½Å¤ß¤òÍѤ¤¤ÆÃͤò¹¹¿·¤¹¤ë¡¥ ![]() ¼ÂÁõ†
ÂÎÀÑÊݸ¤ò³Î¤«¤á¤ë¤¿¤á¤ËSin®ÅÙ¾ì¤Ç°Üή¤µ¤»¤¿·ë²Ì¤ò¼¨¤¹¡¥ ¶ë·ÁÇÈ(0.25 < x < 0.75¤Ç1¡¤¤½¤ì°Ê³°¤Ç0)¤òSin®ÅÙ¾ì(u=sin(¦Ðx/5))¤Çt=5¤Þ¤Ç°Üή¤µ¤»¤¿·ë²Ì¤ò¼¨¤¹¡¥¥°¥ê¥Ã¥É²òÁüÅÙN=128, ¥·¥ß¥å¥ì¡¼¥·¥ç¥ó¶õ´Ö¤ÎÂ礤µL=5.0¡¤¥°¥ê¥Ã¥ÉÉý¦¤x=L/N¡¤¥¿¥¤¥à¥¹¥Æ¥Ã¥×Éý¦¤t=0.1*¦¤x/u¤È¤·¤¿¡¥ÀĤ¤Àþ¤Ï®Åپ졤³¥¿§¤ÎºÙ¤¤Àþ¤Ï1É䴤ȤÎÍúÎò¤ò¼¨¤·¤Æ¤¤¤ë¡¥ »þ´ÖÈùʬ¤ÎÎ¥»¶²½†Á°¿Ê¥ª¥¤¥é¡¼Ë¡†¶õ´ÖÈùʬ ![]() ¤³¤ì¤ÏÁ°¿Ê¥ª¥¤¥é¡¼Ë¡¤È¸Æ¤Ð¤ì¤Æ¤¤¤ë¡¥¤³¤ì¤ËÂФ·¤Æ¡¤¥ì¥Ù¥ë¥»¥Ã¥ÈË¡¤Ê¤É¤Ç¤è¤¯ÍѤ¤¤é¤ì¤ë¤Î¤¬TVD¥ë¥ó¥²¥¯¥Ã¥¿(Total-Variation Diminishing Runge-Kutta:°Ê²¼TVD RK)¤Ç¤¢¤ë¡¥¥ë¥ó¥²¥¯¥Ã¥¿Ë¡¤Ï»þ´ÖÊý¸þ¤ÎÎ¥»¶²½Ë¡¤È¤·¤Æ¤â¤Ã¤È¤â¥Ý¥Ô¥å¥é¡¼¤ÊÊýË¡¤Ç¤¢¤ê¡¤¼¡¿ô¤ò¾å¤²¤Æ¤¤¤±¤Ð¤É¤ó¤É¤óÀºÅÙ¤â¾å¤¬¤ë(¹â¼¡(8¼¡ÀºÅ٤ʤÉ)¤Î¥ë¥ó¥²¥¯¥Ã¥¿(RK)¤Ï±ÒÀ±¤Îµ°Æ»·×»»¤Ê¤É¤Ë¤âÍѤ¤¤é¤ì¤Æ¤¤¤ë¤é¤·¤¤)¡¥¼ÂºÝ¤Ë¤ÏÁ°¿Ê¥ª¥¤¥é¡¼Ë¡¤Ï1¼¡ÀºÅÙ¤ÎRK¤ÈƱ¤¸¤Ç¤¢¤ë¡¥TVD RK¤ÏTVD¤òËþ¤¿¤¹RK¤Ç¤¢¤ë¡¥¤Þ¤¿¡¤·×»»»þ´Ö¤Ï¤«¤«¤ë¤¬°ÂÄꤷ¤¿¿ôÃÍ·×»»¤¬²Äǽ¤Ê±¢²òË¡¤äͽ¬»Ò¡¦½¤Àµ»ÒË¡¤Ê¤É¤â¤¢¤ë¡¥ ¥ë¥ó¥²¥¯¥Ã¥¿Ë¡(Runge-Kutta scheme)†¥ë¥ó¥²¥¯¥Ã¥¿Ë¡(°Ê²¼RK)¤Ï °ÜήÊýÄø¼°¤Î»þ´ÖÈùʬ°Ê³°¤Î¹à¤ò ![]() ¤³¤³¤Ç¡¤ RK2(²þÎÉ¥ª¥¤¥é¡¼Ë¡)†2ÃÊ2¼¡¤Î¥ë¥ó¥²¥¯¥Ã¥¿¤Ï²þÎÉ¥ª¥¤¥é¡¼Ë¡(modified Eular method)¤È¤â¸Æ¤Ð¤ì¤Æ¤¤¤ë¡¥ ![]() RK3†3ÃÊ3¼¡¤Î¥ë¥ó¥²¥¯¥Ã¥¿¤Î¼°¤Ï°Ê²¼¡¥ ![]() RK4†4ÃÊ4¼¡¤Î¥ë¥ó¥²¥¯¥Ã¥¿¤Î¼°¤Ï°Ê²¼¡¥ ![]() Îã:¶ë·ÁÇȤΰÜή†¶ë·ÁÇÈ(0.25 < x < 0.75¤Ç1¡¤¤½¤ì°Ê³°¤Ç0)¤ò°ìÄê®ÅÙ(u=0.75)¤Ç°Üή¤µ¤»¤¿·ë²Ì¤ò¼¨¤¹¡¥¥°¥ê¥Ã¥É²òÁüÅÙN=128, ¥·¥ß¥å¥ì¡¼¥·¥ç¥ó¶õ´Ö¤ÎÂ礤µL=5.0¡¤¥°¥ê¥Ã¥ÉÉý¦¤x=L/N¡¤¥¿¥¤¥à¥¹¥Æ¥Ã¥×Éý¦¤t=(1.0/CFL)*¦¤x/u¤È¤·¤Æ¡¤CFL=7, 1.1, 0.535¤Î¾ì¹ç¤ò¼¨¤¹¡¥ ¥ë¥ó¥²¥¯¥Ã¥¿¤Î¼¡¿ô¤¬¾å¤¬¤ë¤Ë¤Ä¤ì¤Æ¤è¤êÂ礤ʥ¿¥¤¥à¥¹¥Æ¥Ã¥×¤Ç¤â°ÂÄꤷ¤Æ·×»»¤Ç¤¤ë¤è¤¦¤Ë¤Ê¤ë¡¥²¼2¤Ä¤Î¥°¥é¥Õ¤Ç¤ÏCFL=1.1, 0.535¤ÈÃæÅÓȾü¤Ê¿ô»ú¤Ë¤Ê¤Ã¤Æ¤¤¤ë¤¬¡¤¤³¤ì¤ÏRK2,RK3¤¬¿¶Æ°¤ò»Ï¤á¤ë¸Â³¦¤òõ¤Ã¤ÆÀßÄꤷ¤¿¤¿¤á¤Ç¤¢¤ë¡¥¤Á¤Ê¤ß¤ËRK4¤Î¸Â³¦¤ÏCFL=0.49¤°¤é¤¤¤Ê¤Î¤Ç¡¤RK3¤ÈRK4¤Î°ÂÄêÀ¤ÏÂ礤¯¤ÏÊѤï¤é¤Ê¤¤¡¥ TVD¥ë¥ó¥²¥¯¥Ã¥¿(Total-Variation Diminishing Runge-Kutta)†¥ë¥ó¥²¥¯¥Ã¥¿Ë¡¤Ê¤É¤Î²òË¡¤Ï1¼¡¸µ¡¤°ìÄêÉý¥°¥ê¥Ã¥É¤Ç¤ÏTV°ÂÄê¤Ç¤¢¤ë¤¬¡¤ ¿¼¡¸µ¡¤²ÄÊÑÉý¥°¥ê¥Ã¥É¤Ç¤Ï¤É¤¦¤«¡©¤È¤¤¤¦ÌäÂ꤬¤¢¤ë¡¥ ¤³¤ì¤ËÂФ·¤Æ¡¤TVD¤òËþ¤¿¤¹¥ë¥ó¥²¥¯¥Ã¥¿¤¬TVD RK(1)¤Ç¤¢¤ë(TVD¤Ë¤Ä¤¤¤Æ¤Ï²¼»²¾È)¡¥ °ÜήÊýÄø¼°¤Î»þ´ÖÈùʬ°Ê³°¤Î¹à¤ò ![]() ¤³¤³¤Ç¡¤ ¤³¤ì¤ËÂФ·¤Æ¡¤TVD RK¤Ï°Ê²¼¤Ç¤¢¤ë¡¥ ![]() ¤³¤³¤Ç¡¤ ![]() TVD RK2†2¼¡ÀºÅÙ¤ÎTVD RK¤ÏRK¤Ë¤ª¤±¤ë½¤Àµ¥ª¥¤¥é¡¼Ë¡(RK2)¤ËÂбþ¤¹¤ë¡¥
![]() ¡¤«¤é¡¤ ![]() ¢¤«¤é¡¤ ![]() ¤³¤³¤Ç¡¤Ä̾ï¤ÎRK¤Î ![]() ¤è¤Ã¤Æ¡¤ ![]() TVD RK2¤Ç¤Ï
TVD RK3†
![]() ¡¤«¤é¡¤ ![]() ¢¤«¤é¡¤ ![]() ¤³¤³¤Ç¡¤Ä̾ï¤ÎRK¤Î ![]()
![]() ¤è¤Ã¤Æ¡¤ ![]() TVD RK3¤Ç¤Ï3²ó¤ÎÁ°¿Ê¥ª¥¤¥é¡¼Ë¡¤ÎÁȤ߹ç¤ï¤»(
TVD RK4†
![]() ³Æ·¸¿ô¤ÎƳ½Ð¤ÏŤ¯¤Ê¤ê¤½¤¦¤Ê¤Î¤Ç¾Êά((1)»²¾È}¡¥ ![]() TVD,TVB†TVD(Total-Variation Diminishing)(2)¤ÏÈóÀþ·ÁÊýÄø¼°¤Î¼ý«¾ò·ï¤Î¤Ò¤È¤Ä¤Ç¤¢¤ë¡¥ n¥¹¥Æ¥Ã¥×ÌܤǤÎTV(Total-Variation : Á´ÊÑÆ°)¤Ï°Ê²¼¤Î¤è¤¦¤ËÄêµÁ¤µ¤ì¤ë¡¥ ![]() ¤³¤ì¤òÎ¥»¶²½¤¹¤ë¤È¡¤ ![]() ¤È¤Ê¤ë¡¥¤½¤·¤Æ¡¤ ![]() ¤òËþ¤¿¤¹¤È¤¡¤TV°ÂÄê¤Ç¤¢¤ë¤È¤¤¤¤¡¤¤½¤Î¿ôÃÍ·×»»¼êË¡¤ÏTVD¤È¸Æ¤Ð¤ì¤ë¡¥ ¤Þ¤¿¡¤ ![]() ¤òËþ¤¿¤¹¤È¤¡¤TVB(Total-Variation Bounded)¤Ç¤¢¤ë¤È¤¤¤¦¡¥
¤³¤³¤Ç ¥¢¥À¥à¥¹¡¦¥Ð¥·¥å¥Õ¥©¡¼¥¹Ë¡(Adams-Bashforth scheme)†
![]() ´°Á´±¢²òË¡(full implicit scheme)†¥ª¥¤¥é¡¼¤ä¥ë¥ó¥²¥¯¥Ã¥¿¤Ê¤É¤Ç¤Ï¡¤µá¤á¤¿¤¤¥¹¥Æ¥Ã¥×¤Ç¤ÎÃÍ(Î㤨¤Ð ![]() »þ´ÖÈùʬ°Ê³°¤Ë ![]() °ì¤Ä¤Î¼°¤Ë̤Ãοô¤¬2¤Ä( ![]() ¤È¤¤¤¦¹ÔÎóÊýÄø¼°¤òÆÀ¤ë¡¥¤½¤·¤Æ¤³¤ì¤òµÕ¹ÔÎó·×»»¤Ë¤è¤ê²ò¤¯¡¥ ![]() ¿ôÃÍήÂβòÀϤǤϤ³¤Î¹ÔÎó ¥¯¥é¥ó¥¯¡¦¥Ë¥³¥ë¥½¥óË¡(Crank-Nicolson scheme)†¥¯¥é¥ó¥¯¡¦¥Ë¥³¥ë¥½¥óË¡¤Ï±¢²òË¡¤Î°ì¼ï¤Ç¤¢¤ê¡¤»þ´ÖÈùʬ°Ê³°¤Î¹à¤Ë ![]() ¥¯¥é¥ó¥¯¡¦¥Ë¥³¥ë¥½¥óË¡¤Ï2¼¡ÀºÅ٤Ǥ¢¤ê¡¤±¢²òË¡¤Ç¤¢¤ë¤Î¤Ç¹ÔÎóÊýÄø¼°¤ò²ò¤¯É¬Íפ¬¤¢¤ë¡¥ ͽ¬»Ò¡¦½¤Àµ»ÒË¡(predictor-corrector scheme)†¥¢¥À¥à¥¹¡¦¥Ð¥·¥å¥Õ¥©¡¼¥¹Ë¡¤Ê¤É¤ÎÍÛ²òË¡¤Çͽ¬»Ò¤òµá¤á¡¤±¢Åª¤ÊÊýË¡¤Çͽ¬»Ò¤ò½¤Àµ¤¹¤ë¤³¤È¤Ç |