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RSA cryptography is the key technology for safe Internet use, and currently 1,024-bit RSA code is the standard. To maintain
safety when using RSA code, decryption should take more than 1 year even with the fastest supercomputer. Under 1,024-bit RSA
cryptography, 1 to 10 years is the expected range.

Decryption processing consists of sieve processing, processing of linear equations in characteristic 2, and the computation of
algebraic square roots. In order to allow the use the Earth Simulator 2 (ES2), we used the solution of a system of non-linear equations
with multiple-precision numbers of more than 10" digits and tuned the computation of algebraic square roots.

As aresult, the decryption processing had a 98.6% vector operation ratio and 99.9% vectorization ratio over all integer operations.
In addition, the resource requirement of the ES2 for the decryption of 1,024-bit RSA code (RSA-1024, 309 digits) was estimated to
be 2000 node-years for the sieve processing, 6 years on 64 nodes for the processing of linear equations in characteristic 2, and 10

hours on 32 nodes for the computation of the algebraic square roots.

Keywords: Factorization of many-digit composite numbers, Sieve processing, Algebraic square roots, GNFS,

Integer operations on the ES2

1. Introduction is a vector supercomputer. The decryption processing consists
The RSA cryptosystem, which was created by R. L. Rivest, of three parts; the first step is sieve processing, the second step
A. Shamir, and L. M. Adleman in 1978, is the most important is the processing of linear equations in characteristic 2, and the
technology for using the Internet safely; however, the currently third step is the computation of algebraic square roots. In 2012,
used 1,024-bit RSA code (RSA-1024, 309 digits) will not be the last year of our project, the authors tuned the computation of
safe in the near future. The RSA cryptosystem is based on the algebraic square roots for decryption software implemented on
difficulty of the factorization of large composite numbers, and the ES2, and evaluated/discussed the safety of 1,024-bit RSA
the decryption time of 1,024-bit RSA code is several years cryptography code.
even on the fastest supercomputer. For an RSA code with some
number of bits to be considered safe, the decryption time with 2. Decryption of RSA cryptography code
the fastest algorithm and on the fastest supercomputer must be The RSA algorithm uses two many-digit prime numbers
on the order of years. The safeness of this standard is based on P and Q, and another prime number e. First it computes N =
a result that, for a given number n, the factorization of n into P PxQ, F =(P-1)x(Q-1), and D = ¢ (mod F). N and e are used as
and Q has a high computational complexity and consumes an the encryption key, and D is used as the decryption key. The
enormous amount of computation time. encryption key is available to the public, but the decryption key
The present world record for RSA decryption for RSA-768 must be kept secure. This is possible because the decryption key
(768 bits, 232 digits)[10] is 1,677 CPU-years. This means that if ~  is not necessary for encoding a secure message.
one core in a CPU (AMDG64 2.2 GHz) is used, then decryption To decrypt an RSA encoded message, it is necessary to
takes 1,677 years. All reported RSA decryption world records factor a composite number N into two prime numbers. The sieve
were achieved on PC clusters and there has not yet been a report method is the most effective factorization algorithm. It is said
regarding vector supercomputers. that multiple polynomial quadratic sieve (MPQS) factorization
The aim of the our project was to obtain basic information on is the fastest method for the factorization of numbers with fewer
processing RSA decryption based on the general number field than 100 digits and that GNFS is fastest for the factorization of
sieve (GNFS) method for the Earth Simulator 2 (ES2), which numbers with more than 100 digits [6][7][9]. In the case of the
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RSA-768 world record, the factorization was carried out using
a linear function and a sixth-order polynomial in the GNFS
method.

The procedure of GNFS is as follows:

(1)Exploration of polynomials f(x) and g(x):
Set
fx)=ax’+bx’ +ex'+dx’ +ex’ + fx + g,
g(x)=Ax +B.
Some integer M satisfies the following equations:
f(M) =0 (mod N), g(M) =0 (mod N).

Choose integer coefficients a, b, ..., g, A, and B such that
they are as small as possible in absolute value. The integer
M is used instead of g(x) in the classical GNFS method [7].
In that case, the integer M should be as possible as small.
As the computation time to explore for good polynomials is
variable, we omitted this computation time from our evaluation/

discussion.

(2)Sieve method (choosing prime numbers and a prime ideal
base)

For factoring primes in a base, a sieve method is used for
fast computation instead of the modulo operation. In the sieve
processing, the base used for factoring f(x) and g(x) is chosen.
The base for g(x) consists of all prime numbers less than a
specified value and -1, and the base of f(x) consists of almost
half of the prime numbers less than a specified value, which
satisfy

f(x) = (ax — B) x v(x) (mod P)
for some integers o and f3, and for some linear function v(x). For
the sieved data s0+t, the factored polynomial norms for f(x) and
g(x) are defined as follows:

Nf(-t/s) = [at’ — bst’ + cs’t* — ds’t’ + es*t® — f5°t + gs,

Ng(-t/s) = At — Bs.

The value s must be a positive integer and t must be a
coprime integer; s and t are chosen in order to be able to
factorize these equations with the prime numbers in the ideal
base. The number of chosen data is greater than the sum of the

number of elements in both bases.

(3)Processing of linear equations in characteristic 2

First we make a matrix H whose elements are 0 or 1 by
modulo operation from the sieved results, which are derived
from the factorization of N by the bases Nf(-t/s) and Ng(-t/s).
For a polynomial f(x), some quadratic residues besides the
already used sO+t are added[7]. If the number of data is n and
the sum of the number of elements in the bases and the number
of quadratic residues is m, then n must be greater than m (n>m).
Because a matrix H in characteristic 2 is mxn (m<n), the system
of linear equations Hx=0 has non-zero (least square) solutions.
The block Lanczos method is applied to obtain some of these

solutions.
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Table I Computational complexity of RSA-768 (768 bits, 232 digits).

PC-year Ratio(%)

Exploration of polynomials 20 1
Sieve Processing 1500 90
Processing of Linear equations 155 9
Algebraic square roots 1 0
Other 1 0

Total 1677 100

Note: One PC-year means that one core of an AMD64 (2.2 GHz) spends
one year.

(4)Solution of the algebraic square roots module a polynomial
f(x)
There exists the following polynomial H(0) and integer K
satisfying the following equations:
H(0)" = [I(s6+t) (mod f(0)) : modulo a polynomial,
K® = T1(s0+t) (mod g(0))

The s and t were computed from some of solutions of the

: modulo a linear function.

system of linear equations in characteristic 2. Integer K, which
is modulo a linear function, is directly computed; however,
H(0), the square of which is modulo a polynomial, exists but is
not directly computed from the processing of linear equations in
characteristic 2. We compute the algebraic square root H(0) by

computing the polynomial I(s6+t) (mod f(0)).

(5)Factorization of N by constructing a*-b’=0 (mod N)

Set a=K (mod N) and b=H(M) (mod N). If P equals
GCD(atb,N) and Q equals GCD(Ja-b|,N), then N equals PxQ.
This factors N; however, P and Q are 1 and N with probability
1/2[7]. Steps (4) and (5) are repeated until P and Q are not 1 and
N.

The computational complexity of decrypting RSA-768
code using the GNFS method in PC-years of an AMDG64
(2.2 GHz) is shown in Table 1. The size of matrix H is
192,795,550%192,796,550[10].

3. Computation of algebraic square roots by GNFS

For computing algebraic square roots, an application of the
Chinese remainder theorem[7] and solving a system of non-
linear equations with multiple-precision numbers are available.
The Chinese remainder theorem is currently used for the
decryption of RAS code[10]. This method requires relatively
few bits but many conditional-branch operations. This is not
suitable for a vector machine, such as the ES2. Therefore, we
decided to use the solving of a system of non-linear equations.
The procedure for finding algebraic square roots using non-
linear equations by the GNFS method is as follows:
Set

G(0) = I1(s6+t) (mod 1(0)).
Find a polynomial H(0) which satisfies

H(0)> = G(0) (mod f(6)).
If f(0) is sixth degree, then G(0) and H(0) are fifth degree:

G(0) = g0’ +g,0' + 2,0" + 0" + g0 + g,



H(0) = x,0° + x,0° + x,0° + x,0” + x,0 + xs.
The square of H(0) expressed module () is as follows:
H(0)” = hy(x)0” + h, ()8 + hy(x)0” + hy(x)6” + hy(x)6 + hy(x)
(mod £(0))
where x=(X4,X,,...,Xs) .
For H(0)’ = G(0) (mod (0)) to hold, h;(x), which is a second-
degree polynomial of x, must satisfy the following conditions:
hi(x)-g =0, j=0,1,...,5.
The integer solution of this system of non-linear equations is an
algebraic square root H(0). To solve this system, we used the
following Newton iteration procedure:
Jx¥)Ax =h(x") - g,
x®D = x® _ Ay
where h(x)=(hy(x),h,(x),....hs(x))" and g=(g,g,,....g5)". Ax is the

increment of x. J(x) is the Jacobian matrix of h(x), expressed as

follows:
Ohy(x) Ohy(x) Ohy(x)
ox, ox, Ox;
Oh,(x) Oh,(x) Oh, (x)
J(X)=| ox, ox, O
Ohy(x)  Ohy(x) o, (x)
ox, ox, Ox;

In this procedure, an acceleration of basic arithmetic
operations for more than 10'" digits is necessary because the
coefficients of the second-degree polynomial h;(x) and solution

x; have more than 10" digits.

4. Vectorization for the ES2

To compute algebraic square roots, it is necessary to use
basic arithmetic operations for multiple-precision numbers
of more than 10" digits, especially for the acceleration of
the multiplication operation. On the ES2, we accelerated the
multiplication operation for multiple-precision numbers by
using vector processing.

(a) Each element stores a 32-bit number, and one number in
the procedure is expressed by a large number of elements.

(b)All arithmetic operations are 64- or 32-bit integer
arithmetic operations.

(c) The multiplication operations for multiple-precision
numbers are constructed based on the integer fast module
transformation (integer FMT)[3][4].

(d) To utilize bits more effectively, one convolution based on
the Chinese remainder theorem is applied for each four
multiplication operations.

(e) The computational result is carried for each element (32
bits).

The step for integer FMT has large computational

complexity; however, this step is computed in a short time by
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vector processing on the ES2. The processing of “carry” has
a data dependency in that the result of the lower part affects
the computation of the higher part, making it difficult to
apply vector processing. We applied the following method for
vectorization on the ES2.

(el) All elements n are divided into L groups (n=MXxL)
because of the enormous number of elements to be
carried.

(e2) One additional element is added to each group, and thus
a multiple-precision number is expressed by (M+1)xL
elements.

(e3) The computation order for carrying was changed so as
to be computed in parallel for each group.

(e4) The additional element for the final solution x is
eliminated by the normalization.

The following program is the program used on conventional

computers for multiple-precision (MxLx32 bits) addition with
carrying. The lower part is stored in the array with the smaller

index value in ascending order.

Cover = 0;

for (i=0; i<n i++) {
Apval = Ali] + Cover;
Cover = (Apval < A[i]);
Cli] = Apval + BJi];
Cover +=  (C[i] < Apval);

H

The next program is that on the ES2.
Cover[0] = 0;

#pragma cdir nodep(A,B,C,Cover) on_adb(Cover)
for (i=0; i<L-1; i++)
{ Cover[i+1] = A[i][M] + B[i][M]; }
for (j = 0; j<M; j++) {
#pragma cdir nodep(A,B,C,Cover) on_adb(Cover)
for (i=0; i<L i++) {

Apval = A[i][j] + Coverli];

Cover[i] = (Apval <A[i][j]);

Clill1 = Apval + B[i][j];

Cover[i] += (C[i][j] <Apval);
by

#pragma cdir nodep(Cover)

for (i=0; i<L; i++)
{ C[i][M] = Coverli]; }

The unsigned int type is used for the variables and arrays
for the carrying of the final result of multiple-precision
multiplications because results are stored as 32-bit integers. The
unsigned long long int type, 64-bit integer, is used for other
addition operations without carrying. The sign and exponent
part are stored in other variables separately. This method may
introduce discontinuous accessing of the arrays A, B, and C
in the innermost loop, and thus adjustment of the array size is
necessary to avoid accessing different memory banks. For only

the final solution x, which is derived by the Newton iteration
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process, a process to eliminate C[i][M] is added.

“#pragma” is the directive statement for vectorization for the
ES2. “nodep” means that they have no data dependency and can
be used in vector processing. “nodep” was necessary for array C.
“on adb” means to use the special cache on the ES2 for vector

processing. It gave about a 15% computation time reduction.

5. Size and features of RSA decryption on the ES2

A comparison of the decryption of RSA code using GNFS on
PC clusters and a vector machine is shown in Table 2.

Sieve processing can be parallelized into millions of
nodes because a problem is divided into many small ranges
and a small amount of data is collected by a relatively large
computation. However, as the base becomes large, performance
decreases because the memory is accessed by a variable stride
whose length equals a prime number. The processing of linear
equations in characteristic 2 by the block Lanczos method
requires many millions of iterations[2], and all data must be
stored in memory.

The size of each step in the decryption of the RSA code
by GNFS is shown in Table 3. In this computation, the

combinations of the linear functions and the polynomials are

In the sieve processing for a 1,024-bit RSA code, more than
10" sievings are necessary for one datum. In this process, mis-
sieved and not-to-be-sieved results are acceptable because the
sieved result is confirmed by simple computations. However,
the processing of linear equations in characteristic 2 and the
computation of algebraic square roots must be computed
correctly. The size of matrix H is determined from the number
of sieved data and the number of elements in the base. If the
solution of a system of linear equations in characteristic 2,
Hx=0, has non-zero solutions, then the number of sieved data

should be 1000 more than the number of elements in the base.

6. Estimation of the resource requirement of RSA

decryption
An estimation of the resource requirement of decryption

of an RSA code is shown in Table 4. We use the resource
requirement as a measure of the intensity of the RSA code. A
modified method for computing the algebraic square roots is
used for comparison/estimation.

The sieve processing can be performed on one node of
the ES2 because the memory requirement is comparatively

small. For the processing of linear equations in characteristic

used. 2 and the computation of algebraic square roots, the minimal
Table 2 Comparison of PC clusters and a vector machine for RSA decryption.
Sieve Processing Linear Equation in Characteristic 2 | Algebraic Square Roots
PC Clusters In cache Block Lanczos Chinese remainder theorem
Vector Machine | In memory Small change Should be modified
Parallelization A great degree of parallelization Much communication Medium communication
Property Prime number stride access Very sparse binary matrix 10" digits
Operations Integer Integer Integer
Table 3 Size of decryption of RSA code by GNFS.
RSA-768 RSA-896 RSA-1024
232 digits 270 digits 309 digits
Degree of polynomials 6 6or7 7 or 8
Sieve Processing # in base 2x10° 107 5%10°
# of sieved data 107 3x10" 10”
# of collected data 2x10° 10° 5%10°
, . . Matrix size 2x10° 107 5x10°
Linear Equation in Characteristic 2
# of non-zero elements/row hundreds hundreds hundreds
. # of multiplications byTI(s6-+t) 10° 5x10° 2.5x10°
Algebraic Square Roots — - 5 m m
Max # of digits of coefficients 5%10 3x10 2x10
Table 4 Estimation of the resource requirement of the RSA decryption.
RSA-768 RSA-896 RSA-1024
Sieve Processing 2 node-years 60 node-years 2000 node-years
Resource Requirement of | Linear Equation in 800 hours on 4 nodes | 8 months on 16 nodes | 6 years on 64 nodes
the ES2 Characteristic 2
Algebraic Square Roots |3 hours on 1 node 5 hours on 8 nodes 10 hours on 32 nodes
Sieve Processing 700 750 800
Performance Ratio: One Linear Equation in 450 500 550
Node of ES2/PC (2.2 GHz) |Characteristic 2
Algebraic Square Roots | 600 650 700
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number of nodes is determined by the memory requirements.
In all three cases, RSA-768, RSA-896, and RSA-1024, the
sieve processing is the most time-consuming part, and the
computation of the algebraic square roots makes up is a very
small part of the decryption. On the ES2, the sieve processing is
the most accelerated part. The processing of linear equations in
characteristic 2 has a relatively small acceleration ratio because
it requires additional computations for vector processing[2]. The
vector operation ratio (Number of vector operations / Number
of all operations x100) on the ES2 was measured as 98.6%, and
the vectorization ratio (Time of the part where vector operations
can be executed as normal scalar operations / Time of all parts
executed as normal scalar operations x100) was 99.9%. The
vectorization ratio is an estimation based on that one vector
operation is 50 times faster than one scalar operation and that
the average vector length is 200. The vectorization ratios at
the sieve processing, the processing of linear equations in
characteristic 2, and the computation of algebraic square roots
are almost identical, and almost all vector operations in these

processes are integer operations.

7. Summary

On the ES2, for the decryption of the current RSA code,
RSA-1024, it is estimated that the sieve processing will
take 2000 node-years, the processing of linear equations
in characteristic 2 will take 6 years on 64 nodes, and the
computation of algebraic square roots will take 10 hours on 32
nodes. This estimate is based on GNFS, which was used for the
decryption of RSA-768. The required numbers of nodes and
computation times vary according to the used values, functions,
and choice of base. In real use, even given two RSA codes
having the same bit lengths, the decryption times may differ
significantly.

The effective performance ratio of scalar supercomputers is
slightly smaller than that of the ES2; however, the K computer
will take about one year, and so a supercomputer 100 times
faster would take only a couple of days for the decryption of
RSA-1024. If a good method for decryption of the RSA code
appears, much improvement of computation times will occur.

From these results, the current RSA-1024 (1,024 bits,
309 digits) should be replaced by RSA-2048 before the 2019
deadline [8] that was recommended for the 2010 problem.

Almost all computations of the decryption of RSA code
are integer operations, and meeting decryption challenges was
attempted by using scalar computers. To create software to use
on the ES2 required much modification of the software for scalar
machines. However, the resulting software worked effectively
and the ES2 was shown to be suitable for the decryption of RSA

code, which has no floating-point number operations.
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1024 ¥ v b RSA W55 O5R EEHE €

Tay s VEEHE
EMNFEEZ W RY: KEHEGEHRA T4 7R

HE
% REE ERRHERE HEYER B
BRHNFHE  fkRy MEENRA 71 7%

A7 =%y FRREIMED 5 2 TR VEITTH B RSA B 51T ELD Z &85 o TR o317 o PR 20541
ENTEY, ZOREMEIA—N— a2 BFEFHLTOMRENTVEVIRED S L THY Vo T,
ATy 7 bTlE, RAGHFORZERORFED 720, X7 MV RDA—=N—a a2 -5 THIHMIL I 2L —%
(ES2) I2B VT RSA 5 DIfzFEE 21T\, BUEM DI TW5S 1024 ¥ v - D RSA 5 (RSA-1024, 10 # 309 #7) Dk
JEHERE 2 AT D o — MM 7 RSA BE 5 FFEIE. 52 WALEL, B2 (0-1 7— %) OMIEFE, R FHIROFED 3 &
BEA S0 FIAEREIES S WL O EHEAL, 2 4F H IR 2 OMEIEomAMb 27w, REEETH L 3HFEHIE T
BSE MR OFH 1% 5 X 27 b VAL L ES2 128 W T RSA-1024 % fEin 3 5 DI B R EIHE (AT A4 X &iEERL)
e L7z

B R OGP EE 43 E # Chinese Remainder Theorem % i U 72 J51E & £ 5k 0 N7 IERAE 5 #E X 2 i <
FEND 5. PERSERZIGHE LB BN TR T & 2 )i, WAL T 5720, X7 bVt
B TENRY PUVESHETH 2, 22T SEMOBERME T8 VIFIE RN EZER L, =2 — M EExHW
THMEMZ RO D HRARE Lo LERERHY =2 — b VIETRODITE, B 2 IS 2 0HE O 8 & 2%
BRI DOBRENLEI R B0 6 IR THREADY 10 £ 50 BHT OB G WHMEOHER % 1 JTHi T, BHEREZ KD 50
W 3 OB UEETH 5o 1 OIS FETOR SR OEIZEIL 50% DT, FHT6 MOFOFHEILETH %,
B, WIMEHERE OB OFTERER O 1% LT Th b

Za— M BEICHATASHITOBIE—HE G2y M) K2 #ERHEFEDOTEIA L, ES21364 ¥y MEHOF
REEDFHETH Y TRTOFEIIERHE (int64,int32) ZMH L. ZEHT OBOFEITIIEL FMT (73 EH 522 #R)
FRHALTRZ ML L7z FEBEOAINTEEZ LT 72012, 4 MOFEZEREZPEMAEH CERE LY, Gl
BHREREON EFRINIZ T — 2 IKERYH 5720, BEFEB a2 LEHETEIIMBEO7ay 71245# L (=M X L), %
MIZTEFEMLUZ M+ X LEFEE LTRHA LM EFoF— s ikEM2 LEZO 70y 7NTHED S, o 7Tay
7 CHHULT 5 2 LIk » T B FEHMROFIL ES2 THE#HICARZ MVLETE %,

RSA-768 D Tld, AP H R OFHH I 50 M ORI % F0 6 IRE T, RSA-1024 O TIid 2000 fEHT D £R
BEHED T~ 8RADLEA EMWETE B, B FEH MO IR IZ, RSA-768 TIZES2 D 1 / — FT 3 K, RSA-
1024 Ti& 32 / — FT 10 Kl & HEE L7z RSA W5 OfF Sl OHEE L. RSA-768 TIE 52 WA 2 /) — F - 45, £
B2 ORILESEAT4 7 — KT 800 Wi KA EHMAT1 /) — F T3 TH Do RSA-1024 Tld 55 WILHLAT 2000 / —
N AR B2 OMIERTEDY 64 /) — FT64E, REBIWTFHRA32 /= FTI0MRMTH S, S50W0HHE, 1 /—FT
DETREZD, AT ERBEOWIL L BS TH 5o BH 2 OBIERIE & REWEHROFHEII BB L ), ET
RE Ak — FEDS U E %,

RSA-1024 1Z. ES2 X ) EfFWRENPLE L L LTH, EKTIERE, 100 fFEERA ==y Ea—F R 5HAT
s ND EMETE D, L VRO R ORENER SIS ERRMEIEIE T, BAAMH S Tv 2 RSA-1024 (&, R
WIBR 2019 4E £ D B ATIC 2048 ¥y MZEH L2 VRVEER B,

RSA W55 OffiatE (52 WAL, B 2 ofIEETE. REMNFEAR) 3T CERERETH 5, ES2 THAIIHE
SHD72OINLLRPVEZD, N7 PVEHFEE 98.6%. X7 b IVILER 99.9% 253 T & 72,

F =T — F:SEMBO RS, i (52 0), BT, GNFS, 380 5
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