
167

Annual Report of the Earth Simulator Center April 2012 - March 2013 	 Chapter 2	 Epoch-Making Simulation

1.	Introduction
The RSA cryptosystem, which was created by R. L. Rivest,

A. Shamir, and L. M. Adleman in 1978, is the most important
technology for using the Internet safely; however, the currently
used 1,024-bit RSA code (RSA-1024, 309 digits) will not be
safe in the near future. The RSA cryptosystem is based on the
difficulty of the factorization of large composite numbers, and
the decryption time of 1,024-bit RSA code is several years
even on the fastest supercomputer. For an RSA code with some
number of bits to be considered safe, the decryption time with
the fastest algorithm and on the fastest supercomputer must be
on the order of years. The safeness of this standard is based on
a result that, for a given number n, the factorization of n into P
and Q has a high computational complexity and consumes an
enormous amount of computation time.

The present world record for RSA decryption for RSA-768
(768 bits, 232 digits)[10] is 1,677 CPU-years. This means that if
one core in a CPU (AMD64 2.2 GHz) is used, then decryption
takes 1,677 years. All reported RSA decryption world records
were achieved on PC clusters and there has not yet been a report
regarding vector supercomputers.

The aim of the our project was to obtain basic information on
processing RSA decryption based on the general number field
sieve (GNFS) method for the Earth Simulator 2 (ES2), which

is a vector supercomputer. The decryption processing consists
of three parts; the first step is sieve processing, the second step
is the processing of linear equations in characteristic 2, and the
third step is the computation of algebraic square roots. In 2012,
the last year of our project, the authors tuned the computation of
algebraic square roots for decryption software implemented on
the ES2, and evaluated/discussed the safety of 1,024-bit RSA
cryptography code.

2.	Decryption of RSA cryptography code
The RSA algorithm uses two many-digit prime numbers

P and Q, and another prime number e. First it computes N =
P×Q, F =(P-1)×(Q-1), and D = e-1 (mod F). N and e are used as
the encryption key, and D is used as the decryption key. The
encryption key is available to the public, but the decryption key
must be kept secure. This is possible because the decryption key
is not necessary for encoding a secure message.

To decrypt an RSA encoded message, it is necessary to
factor a composite number N into two prime numbers. The sieve
method is the most effective factorization algorithm. It is said
that multiple polynomial quadratic sieve (MPQS) factorization
is the fastest method for the factorization of numbers with fewer
than 100 digits and that GNFS is fastest for the factorization of
numbers with more than 100 digits [6][7][9]. In the case of the

Evaluation of the Intensity of 1,024-bit RSA
Cryptography Code

Project Representative

Hidehiko Hasegawa Faculty of Library, Information and Media Science, University of Tsukuba

Authors

Yasunori Ushiro
Hidehiko Hasegawa

Department of Mathematics, School of Education, Waseda University

Faculty of Library, Information and Media Science, University of Tsukuba

RSA cryptography is the key technology for safe Internet use, and currently 1,024-bit RSA code is the standard. To maintain
safety when using RSA code, decryption should take more than 1 year even with the fastest supercomputer. Under 1,024-bit RSA
cryptography, 1 to 10 years is the expected range.

Decryption processing consists of sieve processing, processing of linear equations in characteristic 2, and the computation of
algebraic square roots. In order to allow the use the Earth Simulator 2 (ES2), we used the solution of a system of non-linear equations
with multiple-precision numbers of more than 1011 digits and tuned the computation of algebraic square roots.

As a result, the decryption processing had a 98.6% vector operation ratio and 99.9% vectorization ratio over all integer operations.
In addition, the resource requirement of the ES2 for the decryption of 1,024-bit RSA code (RSA-1024, 309 digits) was estimated to
be 2000 node-years for the sieve processing, 6 years on 64 nodes for the processing of linear equations in characteristic 2, and 10
hours on 32 nodes for the computation of the algebraic square roots.

Keywords:	 Factorization of many-digit composite numbers, Sieve processing, Algebraic square roots, GNFS,
Integer operations on the ES2

168

Annual Report of the Earth Simulator Center April 2012 - March 2013

RSA-768 world record, the factorization was carried out using
a linear function and a sixth-order polynomial in the GNFS
method.

The procedure of GNFS is as follows:

(1)	Exploration of polynomials f(x) and g(x):
Set

f(x) = ax6 + bx5 + cx4 + dx3 + ex2 + fx + g,
g(x) = Ax + B.

Some integer M satisfies the following equations:
f(M) ≡ 0 (mod N), g(M) ≡ 0 (mod N).

Choose integer coefficients a, b, …, g, A, and B such that
they are as small as possible in absolute value. The integer
M is used instead of g(x) in the classical GNFS method [7].
In that case, the integer M should be as possible as small.
As the computation time to explore for good polynomials is
variable, we omitted this computation time from our evaluation/
discussion.

(2)	Sieve method (choosing prime numbers and a prime ideal
base)
For factoring primes in a base, a sieve method is used for

fast computation instead of the modulo operation. In the sieve
processing, the base used for factoring f(x) and g(x) is chosen.
The base for g(x) consists of all prime numbers less than a
specified value and -1, and the base of f(x) consists of almost
half of the prime numbers less than a specified value, which
satisfy

f(x) = (αx – β) × v(x) (mod P)
for some integers α and β, and for some linear function v(x). For
the sieved data sθ+t, the factored polynomial norms for f(x) and
g(x) are defined as follows:

Nf(-t/s) = |at6 – bst5 + cs2t4 – ds3t3 + es4t2 – fs5t + gs6|,
Ng(-t/s) = At – Bs.
The value s must be a positive integer and t must be a

coprime integer; s and t are chosen in order to be able to
factorize these equations with the prime numbers in the ideal
base. The number of chosen data is greater than the sum of the
number of elements in both bases.

(3)	Processing of linear equations in characteristic 2
First we make a matrix H whose elements are 0 or 1 by

modulo operation from the sieved results, which are derived
from the factorization of N by the bases Nf(-t/s) and Ng(-t/s).
For a polynomial f(x), some quadratic residues besides the
already used sθ+t are added[7]. If the number of data is n and
the sum of the number of elements in the bases and the number
of quadratic residues is m, then n must be greater than m (n>m).
Because a matrix H in characteristic 2 is m×n (m<n), the system
of linear equations Hx=0 has non-zero (least square) solutions.
The block Lanczos method is applied to obtain some of these
solutions.

(4)	Solution of the algebraic square roots module a polynomial
f(x)
There exists the following polynomial H(θ) and integer K

satisfying the following equations:
H(θ)2 ≡ Π(sθ+t) (mod f(θ))	:	modulo a polynomial,
K2 ≡ Π(sθ+t) (mod g(θ))	 :	modulo a linear function.
The s and t were computed from some of solutions of the

system of linear equations in characteristic 2. Integer K, which
is modulo a linear function, is directly computed; however,
H(θ), the square of which is modulo a polynomial, exists but is
not directly computed from the processing of linear equations in
characteristic 2. We compute the algebraic square root H(θ) by
computing the polynomial Π(sθ+t) (mod f(θ)).

(5)	Factorization of N by constructing a2-b2=0 (mod N)
Set a=K (mod N) and b=H(M) (mod N). If P equals

GCD(a+b,N) and Q equals GCD(|a-b|,N), then N equals P×Q.
This factors N; however, P and Q are 1 and N with probability
1/2[7]. Steps (4) and (5) are repeated until P and Q are not 1 and
N.

The computational complexity of decrypting RSA-768
code using the GNFS method in PC-years of an AMD64
(2.2 GHz) is shown in Table 1. The size of matrix H is
192,795,550×192,796,550[10].

3.	Computation of algebraic square roots by GNFS
For computing algebraic square roots, an application of the

Chinese remainder theorem[7] and solving a system of non-
linear equations with multiple-precision numbers are available.
The Chinese remainder theorem is currently used for the
decryption of RAS code[10]. This method requires relatively
few bits but many conditional-branch operations. This is not
suitable for a vector machine, such as the ES2. Therefore, we
decided to use the solving of a system of non-linear equations.
The procedure for finding algebraic square roots using non-
linear equations by the GNFS method is as follows:
Set

G(θ) = Π(sθ+t) (mod f(θ)).
Find a polynomial H(θ) which satisfies

H(θ)2 ≡ G(θ) (mod f(θ)).
If f(θ) is sixth degree, then G(θ) and H(θ) are fifth degree:

G(θ) = g0θ
5 + g1θ

4 + g2θ
3 + g3θ

2 + g4θ + g5,

Table 1 Computational complexity of RSA-768 (768 bits, 232 digits).

PC-year Ratio(%)
Exploration of polynomials 20 1

Sieve Processing 1500 90
Processing of Linear equations 155 9

Algebraic square roots 1 0
Other 1 0
Total 1677 100

Note:	One PC-year means that one core of an AMD64 (2.2 GHz) spends
one year.

169

Annual Report of the Earth Simulator Center April 2012 - March 2013 	 Chapter 2	 Epoch-Making Simulation

H(θ) = x0θ
5 + x1θ

4 + x2θ
3 + x3θ

2 + x4θ + x5.
The square of H(θ) expressed module f(θ) is as follows:

H(θ)2 ≡ h0(x)θ5 + h1(x)θ4 + h2(x)θ3 + h3(x)θ2 + h4(x)θ + h5(x)
(mod f(θ))
where x=(x0,x1,…,x5)

T.
For H(θ)2 ≡ G(θ) (mod f(θ)) to hold, hj(x), which is a second-
degree polynomial of x, must satisfy the following conditions:

hj(x) – gj = 0, j=0,1,…,5.
The integer solution of this system of non-linear equations is an
algebraic square root H(θ). To solve this system, we used the
following Newton iteration procedure:

J(x(k))Δx = h(x(k)) – g,
x(k+1) = x(k) – Δx,

where h(x)=(h0(x),h1(x),…,h5(x))T and g=(g0,g1,…,g5)
T. Δx is the

increment of x. J(x) is the Jacobian matrix of h(x), expressed as
follows:

 .

In this procedure, an acceleration of basic arithmetic
operations for more than 1011 digits is necessary because the
coefficients of the second-degree polynomial hj(x) and solution
xj have more than 1011 digits.

4.	Vectorization for the ES2
To compute algebraic square roots, it is necessary to use

basic arithmetic operations for multiple-precision numbers
of more than 1011 digits, especially for the acceleration of
the multiplication operation. On the ES2, we accelerated the
multiplication operation for multiple-precision numbers by
using vector processing.

(a)	Each element stores a 32-bit number, and one number in
the procedure is expressed by a large number of elements.

(b)	All arithmetic operations are 64- or 32-bit integer
arithmetic operations.

(c)	The multiplication operations for multiple-precision
numbers are constructed based on the integer fast module
transformation (integer FMT)[3][4].

(d)	To utilize bits more effectively, one convolution based on
the Chinese remainder theorem is applied for each four
multiplication operations.

(e)	The computational result is carried for each element (32
bits).

The step for integer FMT has large computational
complexity; however, this step is computed in a short time by

vector processing on the ES2. The processing of “carry” has
a data dependency in that the result of the lower part affects
the computation of the higher part, making it difficult to
apply vector processing. We applied the following method for
vectorization on the ES2.

(e1)	All elements n are divided into L groups (n=M×L)
because of the enormous number of elements to be
carried.

(e2)	One additional element is added to each group, and thus
a multiple-precision number is expressed by (M+1)×L
elements.

(e3)	The computation order for carrying was changed so as
to be computed in parallel for each group.

(e4)	The additional element for the final solution x is
eliminated by the normalization.

The following program is the program used on conventional
computers for multiple-precision (M×L×32 bits) addition with
carrying. The lower part is stored in the array with the smaller
index value in ascending order.

Cover = 0;
for (i=0; i<n i++) {

Apval 	 =	 A[i] + Cover;
Cover 	 =	 (Apval < A[i]);
C[i] 	 =	 Apval + B[i];
Cover 	 +=	 (C[i] < Apval);

}
The next program is that on the ES2.

Cover[0] = 0;
#pragma cdir nodep(A,B,C,Cover) on_adb(Cover)

for (i=0; i<L-1; i++)
{ Cover[i+1] = A[i][M] + B[i][M]; }

for (j = 0; j<M; j++) {
#pragma cdir nodep(A,B,C,Cover) on_adb(Cover)

for (i=0; i<L i++) {
Apval 	 =	 A[i][j] + Cover[i];
Cover[i] 	 =	 (Apval < A[i][j]);
C[i][j] 	 =	 Apval + B[i][j];
Cover[i] 	 +=	 (C[i][j] < Apval);

} }
#pragma cdir nodep(Cover)

for (i=0; i<L; i++)
{ C[i][M] = Cover[i]; }

The unsigned int type is used for the variables and arrays
for the carrying of the final result of multiple-precision
multiplications because results are stored as 32-bit integers. The
unsigned long long int type, 64-bit integer, is used for other
addition operations without carrying. The sign and exponent
part are stored in other variables separately. This method may
introduce discontinuous accessing of the arrays A, B, and C
in the innermost loop, and thus adjustment of the array size is
necessary to avoid accessing different memory banks. For only
the final solution x, which is derived by the Newton iteration

170

Annual Report of the Earth Simulator Center April 2012 - March 2013

process, a process to eliminate C[i][M] is added.
“#pragma” is the directive statement for vectorization for the

ES2. “nodep” means that they have no data dependency and can
be used in vector processing. “nodep” was necessary for array C.
“on adb” means to use the special cache on the ES2 for vector
processing. It gave about a 15% computation time reduction.

5.	Size and features of RSA decryption on the ES2
A comparison of the decryption of RSA code using GNFS on

PC clusters and a vector machine is shown in Table 2.
Sieve processing can be parallelized into millions of

nodes because a problem is divided into many small ranges
and a small amount of data is collected by a relatively large
computation. However, as the base becomes large, performance
decreases because the memory is accessed by a variable stride
whose length equals a prime number. The processing of linear
equations in characteristic 2 by the block Lanczos method
requires many millions of iterations[2], and all data must be
stored in memory.

The size of each step in the decryption of the RSA code
by GNFS is shown in Table 3. In this computation, the
combinations of the linear functions and the polynomials are
used.

In the sieve processing for a 1,024-bit RSA code, more than
1010 sievings are necessary for one datum. In this process, mis-
sieved and not-to-be-sieved results are acceptable because the
sieved result is confirmed by simple computations. However,
the processing of linear equations in characteristic 2 and the
computation of algebraic square roots must be computed
correctly. The size of matrix H is determined from the number
of sieved data and the number of elements in the base. If the
solution of a system of linear equations in characteristic 2,
Hx=0, has non-zero solutions, then the number of sieved data
should be 1000 more than the number of elements in the base.

6. 	Estimation of the resource requirement of RSA
decryption
An estimation of the resource requirement of decryption

of an RSA code is shown in Table 4. We use the resource
requirement as a measure of the intensity of the RSA code. A
modified method for computing the algebraic square roots is
used for comparison/estimation.

The sieve processing can be performed on one node of
the ES2 because the memory requirement is comparatively
small. For the processing of linear equations in characteristic
2 and the computation of algebraic square roots, the minimal

Table 4 Estimation of the resource requirement of the RSA decryption.

RSA-768 RSA-896 RSA-1024

Resource Requirement of
the ES2

Sieve Processing 2 node-years 60 node-years 2000 node-years
Linear Equation in
Characteristic 2

800 hours on 4 nodes 8 months on 16 nodes 6 years on 64 nodes

Algebraic Square Roots 3 hours on 1 node 5 hours on 8 nodes 10 hours on 32 nodes

Performance Ratio: One
Node of ES2/PC (2.2 GHz)

Sieve Processing 700 750 800
Linear Equation in
Characteristic 2

450 500 550

Algebraic Square Roots 600 650 700

Table 3 Size of decryption of RSA code by GNFS.

RSA-768
232 digits

RSA-896
270 digits

RSA-1024
309 digits

Sieve Processing

Degree of polynomials 6 6 or 7 7 or 8
in base 2×108 109 5×109

of sieved data 1017 3×1018 1020

of collected data 2×108 109 5×109

Linear Equation in Characteristic 2
Matrix size 2×108 109 5×109

of non-zero elements/row hundreds hundreds hundreds

Algebraic Square Roots
of multiplications byΠ(sθ+t) 108 5×108 2.5×109

Max # of digits of coefficients 5×109 3×1010 2×1011

Table 2 Comparison of PC clusters and a vector machine for RSA decryption.

Sieve Processing Linear Equation in Characteristic 2 Algebraic Square Roots
PC Clusters In cache Block Lanczos Chinese remainder theorem
Vector Machine In memory Small change Should be modified
Parallelization A great degree of parallelization Much communication Medium communication
Property Prime number stride access Very sparse binary matrix 1011 digits
Operations Integer Integer Integer

171

Annual Report of the Earth Simulator Center April 2012 - March 2013 	 Chapter 2	 Epoch-Making Simulation

number of nodes is determined by the memory requirements.
In all three cases, RSA-768, RSA-896, and RSA-1024, the
sieve processing is the most time-consuming part, and the
computation of the algebraic square roots makes up is a very
small part of the decryption. On the ES2, the sieve processing is
the most accelerated part. The processing of linear equations in
characteristic 2 has a relatively small acceleration ratio because
it requires additional computations for vector processing[2]. The
vector operation ratio (Number of vector operations / Number
of all operations ×100) on the ES2 was measured as 98.6%, and
the vectorization ratio (Time of the part where vector operations
can be executed as normal scalar operations / Time of all parts
executed as normal scalar operations ×100) was 99.9%. The
vectorization ratio is an estimation based on that one vector
operation is 50 times faster than one scalar operation and that
the average vector length is 200. The vectorization ratios at
the sieve processing, the processing of linear equations in
characteristic 2, and the computation of algebraic square roots
are almost identical, and almost all vector operations in these
processes are integer operations.

7.	Summary
On the ES2, for the decryption of the current RSA code,

RSA-1024, it is estimated that the sieve processing will
take 2000 node-years, the processing of linear equations
in characteristic 2 will take 6 years on 64 nodes, and the
computation of algebraic square roots will take 10 hours on 32
nodes. This estimate is based on GNFS, which was used for the
decryption of RSA-768. The required numbers of nodes and
computation times vary according to the used values, functions,
and choice of base. In real use, even given two RSA codes
having the same bit lengths, the decryption times may differ
significantly.

The effective performance ratio of scalar supercomputers is
slightly smaller than that of the ES2; however, the K computer
will take about one year, and so a supercomputer 100 times
faster would take only a couple of days for the decryption of
RSA-1024. If a good method for decryption of the RSA code
appears, much improvement of computation times will occur.

From these results, the current RSA-1024 (1,024 bits,
309 digits) should be replaced by RSA-2048 before the 2019
deadline [8] that was recommended for the 2010 problem.

Almost all computations of the decryption of RSA code
are integer operations, and meeting decryption challenges was
attempted by using scalar computers. To create software to use
on the ES2 required much modification of the software for scalar
machines. However, the resulting software worked effectively
and the ES2 was shown to be suitable for the decryption of RSA
code, which has no floating-point number operations.

Acknowledgement
The authors show the thanks to Dr. Yoshinari Fukui and Mr.

Tadashi Kai of JAMSTEC who gave us precious opinions by
speedup of the ES2 heartily.

References
[1]	 Y. Ushiro, “RSA Decryption using Earth Simulator”,

Annual Report of Earth Simulator Center, 167-171, 2011.
[2]	 Y. Ushiro and H. Hasegawa, “Acceleration of the

Processing of Linear Equations in Characteristic 2 for
RSA Decryption”, Annual Report of Earth Simulator
Center, 165-170, 2012.

[3]	 Y. Ushiro, “High-precision Multiplication by Fast Modulo
Transformation”, IPSJ Journal, Vol. 44, No. 12, 3131-
3138, Dec. 2003 (in Japanese).

[4]	 Y. Ushiro, “Studies on fast algorithms for high-precision
computation”, Ph. D thesis at Waseda University, Mar.
2005 (in Japanese).

[5]	 Y. Ushiro, “A high speed sieve method for the RSA
cipher using the vector computer”, 1733, 101-117, RISM
kokyuroku, Mar. 2011 (in Japanese).

[6]	 R i c h a r d A . M o l l i n , “ R S A a n d P U B L I C - K E Y
CRYPTOGRAPHY”, CRC Press, 2002.

[7]	 Yuji Kida, “Prime factoring by General Number Field
Sieve”, 2003,

	 http://www.rkmath.rikkyo.ac.jp/~kida/nfs_intro.pdf (in
Japanese).

[8]	 Junichi Yamazaki and Souta Kamaike, “The 2010
problem of the Cryptography”, ASCII technologies, 75-
93, Sep. 2010 (in Japanese).

[9]	 Neal Koblitz, translate by Kouichi Sakurai, “A Course in
Number Theory and Cryptography”, Springer, 1997 (in
Japanese).

[10]	 Kazumaro Aoki, “Advances in Integer Factoring
Technique: The Way to Factor RSA-768”, IPSJ Magazine,
51(8), 1030-1038, Aug. 2010 (in Japanese).

172

Annual Report of the Earth Simulator Center April 2012 - March 2013

1024ビット RSA暗号の強度推定

プロジェクト責任者

長谷川秀彦　　筑波大学　図書館情報メディア系

著者
後　　保範　　早稲田大学　教育学部　数学科
長谷川秀彦　　筑波大学　図書館情報メディア系

インターネットを安全に使ううえで欠かせない技術である RSA暗号には桁数の多い合成数の因数分解の困難性が利用
されており、その安全性はスーパーコンピュータを数年使用しても解読されないという仮定のもとで成り立っている。
本プロジェクトでは、RSA暗号の安全性の検証のため、ベクトル方式のスーパーコンピュータである地球シミュレータ
(ES2)において RSA暗号の解読実験を行い、現在使われている 1024ビットの RSA暗号（RSA-1024, 10進 309桁）の強
度推定を行う。一般的な RSA暗号解読は、ふるい処理、標数 2（0-1データ）の線形計算、代数的平方根の計算の 3段
階からなり、初年度はふるい処理の高速化、2年目は標数 2の線形計算の高速化を行い、最終年度である３年目は「代
数的平方根の計算」を並列ベクトル化し、ES2においてRSA-1024を解読するのに必要な資源量（メモリサイズ＆演算時間）
を推定した。
代数的平方根の計算には中国剰余定理 Chinese Remainder Theoremを応用した方法と多数桁の連立非線形方程式を解く

方法がある。中国剰余定理を応用した方法は比較的短い桁数で計算できる反面、判定処理が多発するため、ベクトル計
算機ではベクトル化が困難である。そこで、多数桁の数を係数とする連立非線形方程式を作成し、ニュートン法を用い
て数値解を求める方式を採用した。必要な整数解をニュートン法で求めるには、異なる値に収束する初期値の選定と整
数解以外の除去が必要になる。6次式で係数が 10進 50億桁の場合、初期値の探索を 1万桁で行い、整数解を求めるの
に平均 3個の解が必要である。1個の整数解での暗号解読の成功率は 50%なので、平均で 6回の解の計算が必要である。
なお、初期値探索の時間は解の計算時間の 1%以下である
ニュートン法に使用する多数桁の数は一要素（32ビット）に 2進 32桁を詰めて表現した。ES2は 64ビット整数の剰

余演算が高速であり、すべての計算は整数演算（int64,int32）を使用し、多数桁の数の乗算には整数 FMT（高速剰余変換）
を使用してベクトル化した。乗算結果の有効桁数を増やすために、4回の乗算結果を中国剰余定理で重ね合わせた。計
算結果の桁上げ処理にはデータ依存性があるため、要素数 nを L要素ごとにM個のブロックに分割し（n=M× L）、各
Mに 1要素追加した (M+1)× L要素として表現し、桁上げのデータ依存性を L要素のブロック内で留める。複数のブロッ
クで並列化することによって、代数的平方根の計算は ES2で高速にベクトル処理できる。

RSA-768の解読では、代数的平方根の計算は 50億桁の係数を持つ 6次多項式、RSA-1024の解読では 2000億桁の係
数を持つ 7～ 8次式の多項式と推定できる。代数的平方根の計算時間は、RSA-768では ES2の 1ノードで 3時間、RSA-
1024では 32ノードで 10時間と推定した。RSA暗号の解読時間の推定は、RSA-768ではふるい処理が 2ノード・年、標
数 2の線形計算が 4ノードで 800時間、代数的平方根が 1ノードで 3時間である。RSA-1024では、ふるい処理が 2000ノー
ド・年、標数 2の線形計算が 64ノードで 6年、代数的平方根が 32ノードで 10時間である。ふるい処理は、1ノードで
も実行可能だが、数百万台規模の並列化も容易である。標数 2の線形計算と代数的平方根の計算は規模により、実行可
能な最低ノード数が決まる。

RSA-1024は、ES2より実行性能が少し劣るとしても、京で 1年程度、100倍高速なスーパーコンピュータなら数日で
解読されると推定できる。より効率の良い解法が考案されれば危険性は増す。現在使用されている RSA-1024は、最終
期限 2019年よりも前に 2048ビットに変更した方が良いと考える。

RSA暗号の解読計算（ふるい処理、標数 2の線形計算、代数的平方根）はすべて整数演算である。ES2で高速に計算
させるためには工夫が必要だが、ベクトル演算率 98.6%、ベクトル化率 99.9%が達成できた。

キーワード : 多数桁数の因数分解 , 篩（ふるい）, 代数的平方根 , GNFS, 整数演算

