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Abstract. We propose a new framework, named Simple Interface for
Library Collections (SILC), that gives users access to matrix computa-
tion libraries in a flexible and environment-independent manner. SILC
achieves source-level independence between user programs and libraries
by (1) separating a function call into data transfer and a request for
computation, (2) requesting the computation by means of mathematical
expressions in the form of text, and (3) using a separate memory space
to carry out library functions independently of the user programs. Using
SILC, users can easily access various libraries without any modification
of the user programs. This paper describes the design and implemen-
tation of SILC based on a client-server architecture, and presents some
experimental results on the performance of the implemented system in
different computing environments.

1 Introduction

Solutions of systems of linear equations and other matrix computations take
a major proportion of execution time and memory resources in many large-
scale scientific applications. As a result, a large number of matrix computation
libraries have been developed [1, 2, 3] to facilitate the rapid development of user
programs. Each library offers a different set of solvers and matrix storage formats
and has its own application programming interface that is incompatible with
other libraries.

The traditional way to use matrix computation libraries, i.e., through func-
tion calls, makes user programs dependent on the libraries. Users of a library have
to prepare input matrices in a specific storage format and to make a function
call using a library-specific function name together with a number of arguments
in a prescribed order. Although such function calls are plain and intuitive, they
result in source-level dependency on the library, making it difficult to replace
one library with another.

There are various computing environments, such as personal computers, sym-
metric multiprocessor (SMP) systems, high-end supercomputers, and clusters,
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each of which has its own highly optimized libraries. Therefore, users must mod-
ify their user programs significantly in order to port them from one computing
environment to another. Moreover, there are various solvers and matrix stor-
age formats, the best combination of which varies according to the computing
environment in use and the problem to be solved. However, because of the source-
level dependency resulting from the use of a solver and matrix storage format in
the form of conventional function calls, users who want to find the most efficient
solver and matrix storage format must make considerable modifications in the
user programs to change solvers and matrix storage formats.

To address those issues that arise from the source-level dependency on spe-
cific libraries, we propose a new framework that allows users to easily utilize ma-
trix computation libraries in a flexible and computing environment-independent
manner. The framework, named Simple Interface for Library Collections (SILC),
is based on the following three design decisions.

– To separate a function call into data transfer (to and from a separate memory
space) and a request for computation.

– To request the computation by means of mathematical expressions in the
form of text.

– To use the separate memory space to carry out library functions indepen-
dently of user programs.

In our framework, a function call occurs through three steps: sending in-
put data (i.e., arguments), requesting computation by means of mathematical
expressions, and receiving the results of the computation. The operators that
comprise the expressions are translated into a series of function calls and are
carried out in a separate memory space. The results of the computation are sent
back only when they are required by user programs.

The main benefits of employing SILC are as follows.

– User programs will be free of source-level dependency on specific libraries,
so that users won’t need to modify their programs when changing libraries
according to the computing environment and the problem to be solved.

– Users need to prepare only the smallest amount of data. Temporary memory
space used for carrying out library functions is automatically allocated before
the library functions are called.

– A variety of computing environments and programming languages can be
used, since computation is requested by means of mathematical expressions
in the form of text.

2 Design and Implementation

We have been developing a SILC system for shared-memory parallel computing
environments. Figure 1 shows an architectural overview of the SILC system. It
is based on a client-server architecture. The SILC server and user programs can
run either on the same machine or on different machines on a network.

A user program connects to the SILC server and utilizes the features of matrix
computation libraries by sending three types of requests described below.
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Fig. 1. Architectural overview of SILC

PUT deposits data such as matrices and vectors, together with names for later
reference. The data are converted and transferred into the server’s memory
space, which is independent of the user program. The deposited data remain
there until deleted explicitly.

EXEC requests computation by means of mathematical expressions in the form
of text. The names defined by preceding PUT requests are used in the ex-
pressions to refer to the deposited data. The computation is carried out on
the server asynchronously. The results of the computation and names defined
by the expressions are retained in the server’s memory space.

GET fetches data from the server. Names are used to specify the data to be
fetched, and those data are sent back into the memory space of the user
program. The data are kept undeleted on the server.

In case a user program is written in C, the following three client routines are
used to issue the PUT, EXEC, and GET requests, respectively:

– SILC PUT(〈name〉, 〈data〉)
– SILC EXEC(〈expr〉)
– SILC GET(〈data〉, 〈name〉)

where 〈name〉 is a data name and 〈expr〉 is a mathematical expression (whose
syntax is described later), each specified by a string. 〈data〉 is a pointer to the
silc envelope t structure that is used for data communications between the
user program and the SILC server.

The requests from the user program are received by the interface thread in
the SILC server. PUT and GET requests are handled by the interface thread,
while EXEC requests are stored in the request queue and processed by the
execution thread one after another. The user program and the interface thread
run synchronously, while the execution thread runs asynchronously.

Figure 2 (a) shows a user program that calls a library function ssi cg [3]
to solve a system of linear equations Ax = b with the CG method [4]. The
input data of the library function are matrix A and vector b as well as some
solver-specific parameters, while the output is the solution x. These data are
represented by library-specific data structures and are passed to the library
function through its arguments in a prescribed order. On the other hand, in the
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SSI MATRIX A;
SSI SCALAR *b, *x, work[N*6], params[2];
int options[6], status;

/* Create matrix A and vectors b and x */
status = ssi cg(b, x, work,

params, options, &A, NULL);

(a)

silc envelope t A, b, x;

/* Create matrix A and vectors b and x */
SILC PUT("A", &A);
SILC PUT("b", &b);
SILC EXEC("x = A \\ b"); /* Call a solver */
SILC GET(&x, "x");

(b)

Fig. 2. Comparison between the two ways of using a library function. (a) is a user
program that makes use of a library function in the traditional manner. (b) is another
user program written in the framework of SILC.

framework of SILC, the same computation can be achieved as shown in Fig. 2 (b).
In this framework, the input data are deposited by two separate calls of the client
routine SILC PUT. After the input data are deposited, computation is requested
by the SILC EXEC routine. This routine’s argument is a mathematical expression
in the form of text that instructs the solution of the system of linear equations
using an appropriate library function (e.g., ssi cg). Finally, the output data are
fetched by SILC GET. The source code shown in Fig. 2 (b) does not contain any
code that is specific to the actual library to be used for the computation.

The SILC system is equipped with a simple command language to represent
a request for computation in the form of mathematical expressions. The unit
of computation that is carried out at once is a statement, which is either an
assignment or a procedure call. The left-hand side of an assignment statement
is a variable name, which can be used without declaring a data type. The right-
hand side of the assignment statement is an expression, which consists of variable
names, operators, and function calls. Some of the operators are binary arithmetic
operators (+, -, *, /, %), solutions of systems of linear equations (e.g., A \ b
obtains the solution x as in Ax = b), complex conjugates (A~), and conjugate
transposes (A’). There is no control statement in the command language; loops
and conditional branching are achieved by the programming languages in which
user programs are written.

Every operator, function, and procedure1 that appears in a mathematical ex-
pression is translated into a call of a library function with the help of a wrapper
that actually calls the library function. The wrapper provides a unified interface
to the library function so that the SILC server can invoke all library functions
in the same manner. Related wrappers are grouped into an arithmetic mod-
ule, and all modules are dynamically loaded into the SILC server at startup.
When loading arithmetic modules, the server constructs a mapping table that
relates operators, functions, and procedures to certain wrappers. The server then
handles each of the operators, functions, and procedures used in a given mathe-
matical expression by invoking a corresponding wrapper, which results in a call

1 Functions return values, while procedures do not. Moreover, procedures can change
the values of arguments, whereas functions cannot. The distinction between func-
tions and procedures is introduced to eliminate ambiguities from mathematical
expressions.
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Table 1. Four server configurations used for preliminary experiments

Environment Specifications Thread(s)
(a) A notebook PC CPU: Intel Pentium M 733 1.1 GHz, –

Memory: 768 MB, OS: Fedora Core 3
(b) SGI Altix 3700 CPU: Intel Itanium 2 1.3 GHz × 32, Memory: 32 GB, 1

OS: Red Hat Linux Advanced Server 2.1
(c) IBM eServer CPU: IBM Power5 1.65 GHz × 2 (4 logical CPUs), 4

OpenPower 710 Memory: 1 GB, OS: SuSE Linux Enterprise Server 9
(d) SGI Altix 3700 Same as (b) 16

of a particular library function. Matrix storage formats are implemented in a
similar way, and their wrappers are grouped into a storage format module.

Support for a new matrix storage format can be incorporated into the SILC
system by providing a storage format module coupled with an arithmetic module.
Both arithmetic and storage format modules are parallelized with OpenMP in
shared-memory parallel computing environments.

To assess the performance of SILC servers in different computing environ-
ments, we conducted preliminary experiments using the four configurations of
SILC servers summarized in Table 1. The three computing environments of the
notebook PC, Altix 3700, and OpenPower 710 were interconnected via a 100
Base–TX network. We used the user program shown in Fig. 2 (b), which solves
a system of linear equations Ax = b using the CG method, where A is an N ×N
tridiagonal matrix of double precision in the Compressed Row Storage (CRS)
format [4]. An arithmetic module that includes a wrapper for the library func-
tion ssi cg was used to solve the system of linear equations. The user program
was carried out on the notebook PC for all cases. Since the server to which the
user program connects is specified in a configuration file, the same user program
was used without any modification during the experiments. Figure 3 shows the
results of the experiments, with dimension N on the horizontal axis and execu-
tion time in seconds (including communication time for establishing connection
and transferring data) on the vertical axis. The experimental results proved that
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Fig. 3. Experimental results with the four server configurations shown in Table 1
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(1) the computing environment that achieves the best performance varies accord-
ing to dimension N , and (2) the execution times in the cases of (c) and (d) are
much shorter than those in the case of (a) even at the cost of depositing matrix
A and vector b and fetching the solution x through the relatively slow network.
Since communication time is roughly on the order of O(N) while computation
time is on the order of O(N2), the observation (2) agrees with the expectation
that the communication time will take a smaller fraction of the whole execution
time as dimension N increases.

3 Usability and Benefits

3.1 User Programs

User programs in the framework of SILC are independent of the computing
environment in which a SILC server runs. This allows users to develop their
programs without being concerned about the details of various computing en-
vironments. Users can port their programs from one computing environment to
another without any modification to the programs.

SILC separates data transfer from a request for computation, permitting
PUT, EXEC, and GET requests to be sent from different user programs sepa-
rately. Moreover, a SILC server accepts connections from multiple user programs,
allowing those programs to use the server as an in-memory database through
which they exchange data. Therefore, in the framework of SILC, separate user
programs can be easily combined in such a manner that a mesh generation
program issues PUT requests, a solution program sends EXEC requests, and a
visualization program uses GET requests.

Since data transfer and requests for computation in the form of text are rela-
tively lightweight tasks, less-powerful computing environments, such as personal
computers and mobile environments, will suffice to run user programs for SILC.
This characteristic allows combinations in which, for example, a personal com-
puter is used to control computations on high-performance parallel computers.

3.2 Libraries

An exchange of libraries is required mainly in either of two situations: (1) users
wish to change computing environments or (2) users wish to use different solvers
and matrix storage formats provided in other libraries. There are a variety of
optimized matrix computation libraries that are only available in a particular
computing environment. Moreover, the most efficient solver and matrix storage
format depend strongly on the computing environment to be used as well as on
the problem to be solved. Aside from the considerable costs of modifying user
programs in order to switch libraries, it is burdensome for users to maintain
multiple versions of the same program, each of which is written for a specific
computing environment and a problem based on a specific combination of a
solver and matrix storage format. In the framework of SILC, on the other hand,
users can easily change libraries either by using different SILC servers running



934 T. Kajiyama et al.

in other computing environments or by modifying the mapping table in a SILC
server so that different library functions are used.

In addition, a SILC server has a separate memory space, which enables the
server to convert deposited matrices into different storage formats independently
of user programs. For example, it can be easily achieved that a user program
uses the CRS format to deposit and receive matrices, while the server uses
the Jogged Diagonal Storage (JDS) format [4] to carry out computations on
them. Although conversion of storage formats takes some time and space ac-
cording to the sizes of the matrices, there are cases where better performance is
achieved if the matrices are converted into an appropriate storage format before
the computations on them. Moreover, the conversion of storage formats allows
users to choose solvers and storage formats from among a wide range of matrix
computation libraries.

3.3 Programming Languages

In SILC, computation is requested by means of mathematical expressions in the
form of text. In addition, the client routines of SILC to be linked with user
programs are small and easy to implement. Therefore, various programming
languages can be used to develop user programs. At the moment, three sets of
client routines for C, Fortran, and Python are available. The main requirements
for a programming language to implement the client routines are the capabil-
ities of numerical computation, text processing, and socket-based interprocess
communications; the major programming languages meet these requirements.

SILC permits various combinations of matrix computation libraries and pro-
gramming languages. For example, user programs written in Python can easily
make use of libraries written in C or Fortran in the same way.

4 Related Work

To improve the usability of matrix computation libraries, various approaches
have been proposed based on Remote Procedure Call (RPC) [5, 6] and code
generation techniques [7, 8, 9]. NetSolve [5] and Ninf–G [6] are middleware for
realizing RPC in Grids. In these systems, RPCs are requested in a manner simi-
lar to traditional function calls. In contrast, SILC employs simple mathematical
expressions to request matrix computations, allowing users to ignore compli-
cated matters between user programs and matrix computation libraries. CMC
[8] is a compiler that translates a user-defined function in MATLAB [10] into a
subroutine in Fortran 90. CMC provides support for several sparse matrix stor-
age formats and carries out a variety of source-level optimizations. Both CMC
and SILC pursue the same goal of enhancing the utility of matrix computations.
Whereas CMC focuses on the generation of optimized Fortran subroutines from
MATLAB functions, SILC focuses on the use of various matrix computation
libraries in a language-independent manner.
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5 Concluding Remarks

The traditional manner of using matrix computation libraries through function
calls usually results in source-level dependency on the libraries, making it im-
possible to switch libraries without modifying user programs. To address this
issue, we have proposed a new framework for using matrix computation libraries
in a flexible and environment-independent manner. In this paper, we presented
the design and implementation of the proposed framework for shared-memory
parallel computing environments based on a client-server architecture. We also
reported the results of preliminary experiments assessing the performance of the
implemented system, and discussed the usability and benefits of our proposal.

We plan to provide modules for major matrix computation libraries, allowing
users to easily switch libraries and compare the performance of user programs
with respect to different solvers and matrix storage formats. Implementation of a
scripting language for SILC, run-time optimization of mathematical expressions,
and MPI-based parallelization of the SILC system are also in our future plans.
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