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Abstract In general, when computing the eigenvalues of symmetric matrices, a
matrix is tridiagonalized using some orthogonal transformation. The Householder
transformation, which is a tridiagonalization method, is accurate and stable for
dense matrices, but is not applicable to sparse matrices because of the required mem-
ory space. The Lanczos and Arnoldi methods are also used for tridiagonalization and
are applicable to sparse matrices, but these methods are sensitive to computational
errors. In order to obtain a stable algorithm, it is necessary to apply numerous tech-
niques to the original algorithm, or to simply use accurate arithmetic in the original
algorithm. In floating-point arithmetic, computation errors are unavoidable, but can
be reduced by using high-precision arithmetic, such as double-double (DD) arith-
metic or quad-double (QD) arithmetic. In the present study, we compare double,
double-double, and quad-double arithmetic for three tridiagonalization methods; the
Householder method, the Lanczos method, and the Arnoldi method. To evaluate the
robustness of these methods, we applied them to dense matrices that are appropriate
for the Householder method. It was found that using high-precision arithmetic, the
Arnoldi method can produce good tridiagonal matrices for some problems whereas
the Lanczos method cannot.

1 Introduction

Recently, eigenvalue computation has become very important in several applica-
tions. For a real symmetric dense matrix, the target matrix is usually reduced to
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symmetric tridiagonal form by orthogonal similarity transformations, and the eigen-
values of the obtained symmetric tridiagonal matrix are then computed by, for ex-
ample, the QR method or bisection and inverse iteration algorithms. On the other
hand, for sparse matrices other than band matrices, tridiagonalization by the House-
holder transformation is so difficult because of requiring a great deal of memory.
The Lanczos method involves simple matrix-vector multiplication and vector op-
erations, and does not require modification of the given matrix. The Lanczos and
Arnoldi methods are simple algorithms, but the roundoff error causes the Lanczos
vectors to lose orthogonality [1]. However, they may require less memory.

Mathematically simple algorithms are often unstable because of computation er-
rors. In order to obtain a stable algorithm, we can apply several techniques to the
original algorithm, or simply use accurate arithmetic. In floating-point arithmetic,
computation errors are unavoidable, but can be reduced through the use of high-
precision arithmetic, such as double-double (DD) arithmetic or quad-double (QD)
arithmetic.

Kikkawa et al. and Saito et al.[2, 3] developed the Multiple Precision Arithmetic
Toolbox (MuPAT), a high-precision arithmetic software package, on Scilab[4]. The
MuPAT uses double-double arithmetic and quad-double arithmetic in order to work
on conventional computers. The computation time for double-double-precision
arithmetic is approximately 20 times greater than that for ordinary double-precision
arithmetic, but this cost can be reduced through the use of parallel processing.

In the present paper, we compare double, double-double, and quad-double arith-
metic for the Lanczos method, the Arnoldi method, and the Householder method [1]
for obtaining symmetric tridiagonal matrices from symmetric matrices, and the QR
method for finding all eigenvalues thereof. We use a sparse storage format of Mu-
PAT in order to reduce the memory requirement, but did not use parallel processing.

2 Multiple-precision arithmetic on MuPAT

2.1 Double-double and quad-double arithmetic

Double-double and quad-double arithmetic were proposed as quasi-quadruple-precision
and quasi-octuple-precision arithmetic by Hida et al. [5] and Dekker [6]. A double-
double number is represented by two double-precision numbers, and a quad-double
number is represented by four double-precision numbers. A double numberx(D), a
double-double numberx(DD) and a quad-double numberx(QD) are represented by an
unevaluated sum of double-precision numbersx0,x1,x2,x3 as follows:

x(D) = x0, x(DD) = x0+x1, x(QD) = x0+x1+x2+x3,

wherex0,x1,x2 andx3 satisfy the following inequalities:
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|xi+1| ≤
1
2

ulp(xi), i = 0,1,2,

where ulp stands for ‘units in the last place’. For a given decimal input datax, we
can also denote that

x(D) = (x0)(D), x(DD) = (x0,x1)(DD), x(QD) = (x0,x1,x2,x3)(QD).

The lower portion is ignored or truncated from the longer format data to the shorter
format data, and is assumed to be zeros from the shorter format data to the longer
format data. A double-double (quad-double) number has 31 (63) significant decimal
digits.

In this paper, we abbreviate double-double and quad-double on DD and QD.
Both DD and QD arithmetic are performed using error-free floating point arithmetic
algorithms that use only double-precision arithmetic and so require only double-
precision arithmetic operations. Both DD and QD arithmetic are described in detail
in [5] and [6]. Table 1 shows the number of double-precision arithmetic operations
for DD and QD arithmetic.

Table 1 Number of double-precision arithmetic operations

type add & sub mul div total

add& sub 11 0 0 11
DD mul 15 9 0 24

div 17 8 2 27

add& sub 91 0 0 91
QD mul 171 46 0 217

div 579 66 0 649

2.2 Extended MuPAT with a sparse data structure

A quadruple- and octuple-precision arithmetic toolbox, i.e., the Multiple Precision
Arithmetic Toolbox (MuPAT) and variants thereof [2, 3], allow the use of double-,
quadruple-, and octuple-precision arithmetic with the same operators or functions,
and mixed-precision arithmetic and partial use of different precision arithmetic be-
comes possible. The MuPAT is independent of hardware and operating system.

We developed an accelerated MuPAT for sparse matrices in [3] in order to reduce
the amount of memory and computation time, and using the developed MuPAT,
large matrices can easily be handled. We define two data types for a sparse matrix:
DDSP for double-double numbers andQDSP for quad-double numbers.

These data types are based on the compressed column storage (CCS) format,
which contains vectors in the form of row indices, column pointers, and values.
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Note that DDSP uses two value vectors and QDSP uses four value vectors to repre-
sent double-double and quad-double numbers, respectively. As such, it is possible
to use a combination of double, double-double, and quad-double arithmetic for both
dense and sparse data structures. Based on the definitions of these data types, Mu-
PAT has six data types:constant, DD, and QD for dense data, andsparse, DDSP,
and QDSP for sparse data of double, double-double and quad-double numbers, re-
spectively.

Quad-double arithmetic requires a tremendous number of double-precision op-
erations. In particular, one QD division requires 649 double-precision operations,
so the required computation time is hundreds of times greater than that for double-
precision arithmetic on Scilab. In order to accelerate QD and DD arithmetic op-
erations, external routines written in the C language are prepared. These MuPAT
functions achieve high-speed processing but depend on the hardware and operating
system used. Currently, this code is not parallelized but can be accelerated through
the use of parallel processing.

3 Eigenvalue computation

In order to compute the eigenvalues of a real symmetric matrixA, the matrixA
is usually tridiagonalized to an similarity tridiagonal matrixT by similarity trans-
formations, and the eigenvalues of the matrixT are then computed. The Lanczos,
Arnoldi, and Householder methods can be used for this purpose.

The Lanczos and Arnoldi methods involve matrix-vector multiplication and some
vector operations. Since, unlike in the Householder method, updating the original
matrix A is not necessary, the Lanczos and Arnoldi methods can be easily applied
to sparse matrices.

The QR method and the bisection algorithm are used for computing the eigenval-
ues of a tridiagonal matrixT. For computing the eigenvectors ofT, the QR method
and inverse iteration are used. The quality of eigenvalues and eigenvectors depends
only on the tridiagonal matrixT and not on the tridiagonalization method. IfT is
an inexact approximation ofA, even if the eigenvalues and eigenvectors ofT are
correctly calculated, they do not correspond to those ofA.

In the present paper, we used the implicit single shift QR algorithm based on [7]
for computing all eigenvalues. The QR method generates eigenvalues as diagonal
elements in descending order.

In particular, for a sparse matrix, the transformations used for tridiagonalizingA
to T are not used to compute eigenvectors ofA, which would require tremendous
computation and memory. If eigenvaluesλT of T are accurately computed, an in-
verse iteration method can be applied to compute the eigenvectors of(T −λT I) or
(A−λT I). The inverse iteration method for sparse matrices uses a direct solver or
an iterative solver, such as the conjugate gradient method.
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3.1 Tridiagonalization

For a given symmetric matrixA, it is possible to find an orthogonalQ such that
QTAQ= T is tridiagonal. In the present paper, we consider three tridiagonalization
methods for symmetric matrices: the Lanczos method, the Arnoldi method, and the
Householder method. These methods are described in detail in [1].

3.1.1 Lanczos method

The Lanczos method can construct an equivalent tridiagonal matrix by generating
orthogonal bases one after another. However, roundoff errors cause the Lanczos
vectors to lose orthogonality [1].

Let A be ann× n symmetric matrix, and letQ be ann× n orthogonal matrix.
Then, we generateT = QTAQ. We set the column ofQ by

Q= [qqq1|qqq2| · · · |qqqn]

and the components ofT by

T =



α1 β1 · · · 0

β1 α2 β2

...
. . .

. . .
. . .

...
. . .

. . . βn−1
0 · · · βn−1 αn


.

Equating columns asAQ= QT, we conclude that

Aqqqk = βk−1qqqk−1+αkqqqk+βkqqqk+1 (β0qqq0 ≡ 000),

for k= 1,2, ...,n−1. The orthonormality of the vectorqqqk implies

αk = qqqT
k Aqqqk.

If we define the vectorrrrk as

rrrk = (A−αkI)qqqk−βk−1qqqk−1,

and if it is nonzero, then

qqqk+1 =
rrrk

βk
,

whereβk =±∥rrrk∥2.
For a given symmetric matrixA∈ Rn×n and an initial vectorqqq0 ∈ Rn, Algorithm 1

computes a matrixQ = [qqq1, · · · ,qqqn] with orthonormal columns and a tridiagonal
matrixT ∈ Rn×n so thatAQ= QT. The diagonal and superdiagonal entries ofT are
α1, · · · ,αn andβ1, · · · ,βn−1, respectively.



6 Ryoya Ino, Kohei Asami, Emiko Ishiwata, and Hidehiko Hasegawa

Algorithm 1 The Lanczos method [1]
1: k= 0, rrr0 = qqq0,β0 = ∥qqq0∥2
2: while βk ̸= 0 do
3: qqqk+1 =

rrrk
βk

4: k= k+1
5: αk = qqqT

k Aqqqk
6: rrrk = (A−αkI)qqqk−βk−1qqqk−1
7: βk = ∥rrrk∥2
8: end while

3.1.2 Arnoldi method

The Arnoldi method is a way to extend the Lanczos method to non-symmetric ma-
trices and generate the Hessenberg matrixQTAQ= H. However, for a symmetric
matrix A, this process produces a tridiagonal matrixT = H.

In the same manner as the Lanczos iteration, we setQ = [qqq1,qqq2, · · · ,qqqn] and
compare columns inAQ= QH. Then,

Aqqqk =
k+1

∑
i=1

hikqqqi , 1≤ k≤ n−1.

Isolating the last term in the summation gives

rrrk ≡ Aqqqk−
k

∑
i=1

hikqqqi ,

wherehik = qqqT
i Aqqqk for i = 1,2, ...,k. It follows that if rrrk ̸= 000, thenqqqk+1 is specified

by

qqqk+1 =
rrrk

hk+1,k
,

wherehk+1,k = ∥rrrk∥2. These equations define the Arnoldi method.
For a given matrixA∈Rn×n and an initial vectorqqq0 ∈Rn, Algorithm 2 computes a

matrixQ= [qqq1, · · · ,qqqn]∈ Rn×n with orthonormal columns and an upper Hessenberg
matrixH ∈Rn×n so thatAQ=QH. Especially for a symmetric matrix, this algorithm
generates an orthogonal matrixQ and a tridiagonal matrixT.
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Algorithm 2 The Arnoldi method [1]
1: k= 0, rrr0 = qqq0,h1,0 = ∥qqq0∥2
2: while hk+1,k ̸= 0 do
3: qqqk+1 =

rrrk
hk+1,k

4: k= k+1
5: rrrk = Aqqqk
6: for i = 1,2, · · · ,k do
7: hik = qqqT

i rrrk
8: rrrk = rrrk−hikqqqi
9: end for

10: hk+1,k = ∥rrrk∥2
11: end while

3.1.3 The Householder method

The Householder method for a symmetric matrix can generate an tridiagonal ma-
trix QTAQ= T using the Householder matrix [1]. Suppose that the Householder
matricesP1, · · · ,Pk−1 have been determined such that if

Ak−1 = (P1 · · ·Pk−1)
TA(P1 · · ·Pk−1),

then

Ak−1 =

B11 B12 0
B21 B22 B23
0 B32 B22


is tridiagonal through its firstk−1 columns. IfP̃k is an order-(n− k) Householder
matrix such that̃PkB32 is a multiple ofIn−1 and ifPk = diag(Ik, P̃k), then the leading
k-by-k principal submatrix of

Ak = PkAk−1Pk =

B11 B12 0
B21 B22 B23P̃k
0 P̃kB32 P̃kB33P̃k


is tridiagonal. Clearly, ifU = P1 · · ·Pn−2, thenUTAU = T is tridiagonal. In the cal-
culation ofAk, it is important to exploit symmetry during the formation of the matrix
P̃kB33P̃k. More specifically, suppose thatP̃k has the form

P̃k = I −βvvvvvvT , β =
2

vvvTvvv
, 0 ̸= vvv∈ Rn−k.

Note that ifppp= βB33vvv andwww= ppp− (β pppT vvv
2 )vvv, then

P̃kB33P̃k = B33−vvvwwwT −wwwvvvT .

We used the Householder algorithm written in [1].
Since only the upper triangular portion of this matrix needs to be calculated, we

see that the transition fromAk−1 to Ak can be accomplished in only 4(n−k)2 flops
for a dense matrix.
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4 Numerical experiments

In this section, we analyze the accuracy, numerical stability, and computing cost
for three tridiagonalization methods and the computed eigenvalue by the implicit
single shift QR algorithm [7] for the tridiagonal matrixT. For tridiagonalization,
we compare three arithmetic precisions: double (D), DD, and QD.

The QR method can be applied to non-symmetric matrices (not only tridiagonal
matrices), in which case complex eigenvalues would appear. Therefore, we use only
tridiagonal factors in the Arnoldi method.

For the Lanczos and Arnoldi methods, the initial vectorqqq0 is a uniformly dis-
tributed random vector between 0 and 1 using the ’rand’ function of Scilab.

All experiments were carried out on an Intel Core i5-4200U, 1.60 GHz, 8GB
memory and Scilab 5.5.0 on Windows 7 Professional. We assumed the ’true eigen-
value’ to be the computation result produced by the ’Eigenvalues’ function of Math-
ematica with 200 decimal digits.

4.1 Example 1: nos4 (small problem)

We demonstrate the results of the three tridiagonalization methods for a small matrix
’nos4’ in MatrixMarket [8]. The dimension of this matrix was 100, the number of
the nonzero elements was 594, the condition number on the matrix was 2.7×103,
and the matrix originated from a structure problem. The eigenvalues of nos4 are
distributed between 0.00053795... and 0.84913778... without any clustered eigen-
values.

Table 2 lists the accuracy of the eigenvalues, the loss of orthogonality, and the
computation times for the three tridiagonalization methods and three precisions.
Here,max|λi − λ̄i | andavg|λi − λ̄i | denote the maximum absolute error and the av-
erage of absolute errors, whereλi andλ̄i represent theith computed eigenvalue and

the true eigenvalue, respectively. We checked the loss of orthogonality by∥QT Q−I∥F
∥I∥F

,
whereI andQ are a unit matrix and an orthogonal matrix, respectively, and∥·∥F de-
notes the Frobenius norm. ’Avg time’ for dense and sparse implies the computation
time only for tridiagonalization part.

For the QR algorithm, the accuracy of the eigenvalues in D, DD, and QD are
approximately the same for all tridiagonalization methods. This means that the ac-
curacy of the QR method with double-precision arithmetic is sufficient, and the ac-
curacy of tridiagonalization is important in eigenvalue computation. Therefore, we
hereinafter apply the QR method with only double-precision arithmetic and focus
on the difference in accuracy and computation time among the tridiagonalization
methods and their arithmetic precisions.
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Table 2 Accuracy and tridiagonalization time [s] for nos4

Tridiagonalization QR max|λi − λ̄i | avg|λi − λ̄i | avg ∥QT Q−I∥F
∥I∥F

avg
time

dense

avg
time

sparse

D 1.43×10−1 4.56×10−2

D DD 1.43×10−1 4.56×10−2 4.21×10−1 0.016 0.006
QD 1.43×10−1 4.56×10−2

D 7.96×10−2 1.91×10−2

Lanczos DD DD 7.96×10−2 1.91×10−2 2.45×10−1 0.113 0.095
QD 7.96×10−2 1.91×10−2

D 2.00×10−15 2.31×10−16

QD DD 1.97×10−16 3.86×10−17 9.65×10−21 0.554 0.157
QD 1.97×10−16 3.86×10−17

D 1.40×10−2 1.15×10−3

D DD 1.40×10−2 1.15×10−3 1.41×10−1 0.031 0.028
QD 1.40×10−2 1.15×10−3

D 1.55×10−15 1.82×10−16

Arnoldi DD DD 4.94×10−16 5.18×10−16 7.25×10−13 0.938 0.903
QD 4.94×10−16 5.18×10−17

D 2.25×10−15 2.75×10−16

QD DD 3.50×10−16 3.88×10−17 6.17×10−46 2.172 1.744
QD 3.50×10−16 3.88×10−17

D 1.44×10−15 2.53×10−16

D DD 4.54×10−16 1.04×10−16 5.99×10−15 0.038 -
QD 4.54×10−16 1.04×10−16

D 9.99×10−16 1.90×10−16

Householder DD DD 2.87×10−16 4.85×10−17 5.49×10−31 5.054 -
QD 2.87×10−16 4.85×10−17

D 9.99×10−16 1.90×10−16

QD DD 2.87×10−16 4.85×10−17 1.61×10−63 41.697 -
QD 2.87×10−16 4.85×10−17

Concerning the tridiagonalization methods, there is little difference between the
maximum and average errors for Lanczos-QD, Arnoldi-DD, -QD, and Householder-
D, -DD, -QD (where, for example, Lanczos-QD indicates the Lanczos method with
QD precision).

The orthogonalities of Lanczos-QD, Arnoldi-DD, and Householder-D are ap-
proximately the same and can be improved by using DD and QD. The relationship
between method and accuracy depends on the given matrix. In the case of nos4,
however, Householder-D, Arnoldi-DD and Lanczos-QD are sufficient.
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In Fig. 1, the horizontal axis indicates the index of the eigenvalues in descending
order, and the vertical axis indicates the absolute error of eigenvalues|λi − λ̄i |.
Fig. 1 shows that the absolute errors of Lanczos-D and -DD are large in general but
become small for smaller eigenvalues, the absolute error of Arnoldi-D increases for
smaller eigenvalues (from approximately the 50th eigenvalue), and Lanczos-QD,
Arnoldi-DD, -QD, and Householder-D provide sufficient accuracy.

In Fig. 2, the horizontal axis again indicates the index of the eigenvalues in de-
scending order, and the vertical axis indicates the value of the computed eigenvalues.
The results for ’Mathematica’, which represents the true eigenvalues, Lanczos-QD,
Arnoldi-DD, and Householder-D are approximately the same. Both Lanczos-D and
-DD have duplicative eigenvalues. Using higher-precision arithmetic, a plot is grad-
ually brought closer to the true eigenvalue.

Table 3 Elements outside the tridiagonal part for the Arnoldi method for nos4

D DD QD

10−5 ≤ x 598 0 0
10−10 ≤ x< 10−5 1224 0 0
10−15 ≤ x< 10−10 2716 103 0
10−20 ≤ x< 10−15 313 453 0
10−30 ≤ x< 10−20 0 3171 0
10−40 ≤ x< 10−30 0 1124 0
10−50 ≤ x< 10−40 0 0 263

x< 10−50 0 0 4588

maximum 1.83×10−1 3.97×10−12 7.42×10−45

Table 3 lists the numbers of elements outside the tridiagonal part (upper trian-
gular) for the Arnoldi method. The Arnoldi method is based on similarity transfor-
mation of non-symmetric matrices to Hessenberg matrices, and elements outside
the tridiagonal part should be zero in the case of symmetric matrices. However, in
our numerical experiments, nonzero elements appeared outside the tridiagonal part
because of rounding errors. The relationship between nonzero elements and the ac-
curacy of tridiagonalization is an area for future study.

In the case of using dense data, the ratio of the computation time for the Lanc-
zos, Arnoldi, and Householder methods with double-precision arithmetic is approx-
imately 1:2:2. For DD, the number of double-precision computations is 7 for the
Lanczos method, 30 for the Arnoldi method, and 133 for the Householder method.
For QD, the number of double-precision computations is 35 for the Lanczos method,
70 for the Arnoldi method, and 1,100 for the Householder method.

The computation times for Lanczos-DD and Lanczos-QD for sparse data are
84% and 28%, respectively, of those for dense data, and the computation times for
Arnoldi-DD and Arnoldi-QD for sparse data are 96% and 80%, respectively, of
those for dense data. Costs of high-precision arithmetic and saving of computation
time in sparse data type are depending on used algorithms and their implemen-
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tations. For small matrices, Householder-D is the best method, but the computa-
tion time for Lanczos-QD using sparse data is only four times greater than that for
Householder-D.
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4.2 Example 2: Trefethen200b (medium problem)

We used a larger test matrix ’Trefethen200b’ from the University of Florida Sparse
Matrix Collection [9]. The dimension of this matrix was 199, the number of nonzero
elements was 2,873, the condition number was 5.2×102, and the matrix originated
from a combinatorial problem. The eigenvalues of Trefethen200b’ are distributed
between 2.3443911... and 1223.3718... without any clustered eigenvalues.

Table 4 shows the results for various combinations of methods and precisions.
As mentioned in Section 4.1, we applied the QR method with only double-precision
arithmetic.

Concerning the accuracy of the eigenvalues, Lanczos-QD and Arnoldi-DD are
not improved, but Arnoldi-QD and Householder-D, -DD, -QD are sufficient. In
terms of orthogonality, the accuracy of Arnoldi-QD and Householder-D is approxi-
mately the same.

In the case of using dense data, the ratio of the computation times for the Lanc-
zos, Arnoldi, and Householder methods with double-precision arithmetic is approx-
imately 1:14:30. For DD, the number of double-precision computation is 114 for
the Lanczos method, 52 for the Arnoldi method, and 244 for the Householder
method. For QD, the number of double-precision computations is 634 for the Lanc-
zos method, 147 for the Arnoldi method, and 2,314 for the Householder method.

The computation times for Lanczos-DD and for Lanczos-QD for sparse data are
26% and 13%, respectively, of those for dense data, and the computation times
for Arnoldi-DD and Arnoldi-QD are both 80% of those for dense data. For Tre-
fethen 200b, the computation time was greatly reduced by the use of sparse data of
MuPAT.

In Fig. 3, the horizontal and vertical axes are the same as in Fig. 1. Fig. 3 reveals
the following: The absolute errors for Lanczos-QD are large, but become small for
smaller eigenvalues from approximately half of dimension. In contrast, the absolute
error for Arnoldi-DD increases for the smaller eigenvalues (from approximately the
80th eigenvalue). Arnoldi-QD and Householder-D are sufficient.

Table 5 shows the upper triangular factors outside the tridiagonal part, which
should be zero using the Arnoldi method. For Arnoldi-D and -DD, there are nu-
merous nonzero elements within the range of double precision, and these elements
affect the accuracy of the eigenvalues. For Arnoldi-QD, the number of nonzero ele-
ments is sufficiently small and does not affect the accuracy of eigenvalues in double
precision.
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Table 4 Accuracy and tridiagonalization time [s] and memory space [KB] for Trefethen200b

Tridiagonal max|λi − λ̄i | avg|λi − λ̄i | ∥QT Q−I∥F
∥I∥F

dense sparse
-ization time space time space

D 1.10×102 3.44×101 6.26×104 0.01 77.95 0.02 40.26

Lanczos DD 7.94×101 2.81×101 4.50×10−4 1.14 158.23 0.30 82.75

QD 2.14×101 3.75×100 1.48×10−4 6.34 314.79 0.83 163.88

D 2.32×101 4.61×100 1.42×10−1 0.14 78.34 0.10 39.67

Arnoldi DD 1.37×101 2.34×100 1.00×10−1 7.32 158.90 5.86 81.70

QD 7.84×10−12 1.53×10−12 1.00×10−22 20.66 316.21 16.59 161.71

D 9.78×10−12 6.30×10−13 5.46×10−15 0.30 154.72 - -

Householder DD 1.82×10−12 1.03×10−14 4.51×10−31 73.41 311.94 - -

QD 1.82×10−12 1.03×10−14 9.68×10−64 694.42 621.71 - -

Table 5 Elements outside the tridiagonal part for the Arnoldi method for Trefethen200b

D DD QD

100 ≤ x 1474 269 0
10−5 ≤ x< 100 6718 1543 0
10−10 ≤ x< 10−5 7465 2096 0
10−15 ≤ x< 10−10 3846 2517 0
10−20 ≤ x< 10−15 0 3168 56
10−30 ≤ x< 10−20 0 9906 1104
10−40 ≤ x< 10−30 0 4 2515
10−50 ≤ x< 10−40 0 0 4548
10−60 ≤ x< 10−50 0 0 9967

x< 10−60 0 0 1313

maximum 2.91×102 3.70×102 2.19×10−18
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Fig. 3 Absolute error in eigenvalues for Trefethen200b in descending order

4.3 Example 3: nos5 (slightly large problem)

We used the ’nos5’ test matrix in Matrix Market [8]. The dimension of this matrix
was 468, the number of nonzero elements was 5,172, the condition number was
1.1×103, and the matrix originated from a structure problem. The eigenvalues of
nos5 are distributed between 52.899482... and 582029.11... without any clustered
eigenvalues.

Table 6 shows the results for various combinations of methods and precisions.
Concerning the accuracy of the eigenvalues, the accuracy of Arnoldi-QD was not
improved, but the accuracy of Householder-D was sufficient. With respect to the
orthogonality, only Householder-D was sufficient. Although the condition number
of nos5 was not so large, the Arnoldi method with QD cannot generate an accurate
tridiagonal matrix. The modification of the implementation of the Lanczos method
and the Arnoldi method and the choice of the initial value remain as areas for future
research.

Arnoldi and Lanczos methods in high-precision arithmetic can not produce accu-
rate eigenvalues in current implementation, for example, Lanczos-QD with sparse
data structure can consume approximately the same as the computation time and the
memory space with Householder-D. There are some possibility to improve the com-
putation for high-precision arithmetics. By the compiled code and parallel process-
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ing, the computation will be improved, however their codes depend on computing
enviroment and loose ease of use.

In the Arnoldi method, the ratio of matrix-vector operations becomes smaller as
the dimension of matrix becomes larger, but in the Lanczos method, the ratio is not
changed regardless of the dimension. Thus, in the Arnoldi method, the speed up by
the sparse data is small.

Table 6 Accuracy and tridiagonalization time [s] and memory space [KB] for nos5

Tridiagonal max|λi − λ̄i | avg|λi − λ̄i | ∥QT Q−I∥F
∥I∥F

dense sparse
-ization time space time space

Lanczos DD 1.31×105 5.27×104 7.59×10−1 11.34 862.40 3.23 437.39

QD 8.92×104 3.70×104 5.35×10−1 56.03 1721.69 6.86 873.16

Arnoldi DD 2.18×104 5.74×102 9.25×10−2 199.91 860.62 188.57 434.76

QD 2.15×104 2.87×102 6.54×10−2 446.47 1718.11 409.35 867.83

Householder D 6.64×10−9 5.95×10−10 1.04×10−14 5.38 855.59 - -

5 Concluding remarks

Although the authors believe that simple algorithms are good, floating-point number
operations can break simple algorithms due to rounding errors. In the present paper,
we attempted to stabilize the Lanczos and Arnoldi methods for tridiagonalization
of symmetric matrices by using high-precision arithmetics; DD and QD. Since the
Lanczos and Arnoldi methods are based on matrix-vector multiplication and do not
change the given matrix, they have a possibility to be used for tridiagonalizing large
sparse matrices.

We analyzed accuracy, numerical stability, and computing cost for tridiagonal-
ization using dense and sparse matrix operations. We compared double (D), double-
double (DD), and quad-double (QD) arithmetic for tridiagonalization by the Lanc-
zos, Arnoldi, and Householder methods, and eigenvalue computation using the
shifted QR method in only double-precision arithmetic.

The Lanczos method was stabilized by QD for only a small problem and required
more precision. The Arnoldi method was also stabilized, although there were some
problems in the case of relatively large test problems. A large matrix had some
elements outside the tridiagonal part, resulting in an non-symmetric matrix. The
Householder method was sufficient in double-precision arithmetic, but was not fit
for large sparse matrices.
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We conclude that a high-precision arithmetic is effective for tridiagonalization
and no special technique is necessary for some problem. Lanczos and Arnoldi meth-
ods can work well with high-precision arithmetic. However, some improvement is
necessary for other porblems. The best combination of algorithm and computing
precision depends on the problem to be solved. The controlling precision in auto-
matic is one of our future issues.

The sparse data type in MuPAT could reduce the required memory space and
computation time for sparse matrices in high-precision arithmetic. For accelerating
computation, parallel computing for these operations will be necessary. The analysis
of the numerical stabilty and additional improvement of algorithms and implemen-
tation are our future issues.
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