More Accurate Computation for Double-Double Arithmetic

without Additional Execution Time by Parallel Processing
T

Hotaka Yagi™ Emiko Ishiwata™ Hidehiko Hasegawa

URL of Abstract

*Tokyo University of Science, Japan TUniversity of Tsukuba, Japan

1. Introduction

To reduce rounding errors in floating-point arithmetic, the use of high-precision arithmetic is effective.

Our team developed MuPAT, an open-source interactive Multiple Precision Arithmetic Toolbox [1] for MATLAB and Scilab.

MuPAT uses the DD (Double-Double) algorithm [2], which is based on a combination of double-precision arithmetic operations and enables quasi quadruple-precision arithmetic.
We accelerate DD vector and matrix operations by using AVX2 and OpenMP, and achieve higher performance for heavier DD operations.

We found that some DD operations can be computed more accurately without additional execution time in parallel processing environment.

2. DD Arithmetic 4. Roofline Model Analysis [6]

A DD number a is represented by a combination of two double-precision numbers a,; and a;,, Roofline is a visual performance model that sets

a — ap; + a, | < 1 Ip(ay,) upper bound of performance depending on
oo ETETET e T o - Alol = JULPApi)- operational intensity and hardware.
IEEE /754 Quadruple S| ey €15 m; Mi12 128 I | 6 | |
: : " —ﬁx??p?MPMP | \)0\“‘ We
There are two implementations of DD addition, called Cray-style and [2]. 64 | —AVX2 only, OpenMP only nenlcon S8
2
Cray-style more accurate, but £32 -
% doubl — not widely used, O ‘“e
ouble-precision «()—due to computation /|| G 16 |-
operations @ 11 heavy 20 ost [3]. Q :
- u
Error bound DDadd (a,b) = (1 + 6;)a+ (1 + 6,)b DDadd (a,b) = (1+68)(a+ b - 8 | of IEEE-style
: : _ 5-105 = | i I
normal) With |8:1,18,] < €44 accurate With|6| < 2€44 , €44 = 2 S, ! | I]
O] = =
. 1 S=anu D by 1 S =an D b g el=el® (b, OV) . bt ;';E:;'; %Q:: % :<:I - X
Algorithm 2 V=50 ay 7 V=50 ap 9 eh=ehDt 2T I T TR Tf)
O o©3 eh=ap,; © (s©O V) 3 eh=a,,060OV) 19 t=s@eh 1 | >=:| R:A:A alts:k tsnl>=| A
_ 4 eh=eh® (by; ©Ov) 4 eh=eh® (b, ©v) 11 eh=eh O (tOs) 1/16 1/8 1/4 | 1/2 | 1 2 4
computational order c eh=ch® (0o bu) e t=a,®b, > el=el @ eh Operational Intensity [flop/byte]
cannot change ! e cn=s @ eh c v=tOa 130 =t @ el
l — lo hi — - - - - = =
: _ = _ « Operational intensity hits the diagonal line:
lo — hi o l
7 ¢, =ehO (cy O s) 7 el=0a,0(t0V) 14c¢,=elO (cy; OF) B) 4 9

the operation is memory bound

 Operational intensity hits the horizonal line:
the operation is compute bound mﬁ»

3. Parallelization by AVX2 and OpenMP

« AVX2 [4] instructions can process four double-precision data in one unit of time.
« OpenMP [5] allows thread-level parallelism on shared memory for a multicore environment.

Environment

CPU: Intel Core i7 7820HQ, 2.9 GHz processor
Memory: LPDDR-2133

Algorithm of y = Ax

1. #pragma omp for

2. for(j =0;j <n;j++)
3.
4,

for(i=0;i <n;i+=
y(i) = DDadd(y(i), DDmul(a(i,j),x()))

4)

Since we use MATLAB,
column major order
IS unit stride access.

performance memory performance

: . : . . [Gflops/sec] X operational intensity)

. Unit stride access is key to use AVX2 load/store instructions. P P Y
. . . . e —

(The overhead is required for non unit stride access.) Performance ol T/

< We apply AVX2 for inner loop as in line 3.

» Parallelizing outer loop by OpenMP can offer much larger workload for each thread.
" We apply OpenMP for outer loop as in line 1, 2.

« We implement two kinds of DD addition: Cray-style and IEEE-style in line 4.

The order of loop should be j-i.

Operational intensity
[flops/bytes]

double precision
floating-point operations [flops] /
memory references [bytes]

Upper bound of

min(computational performance,

execution time[sec]

Computational
performance
[flops/sec]

clock frequency of CPU [Hz] X
flops can be computed
in one unit of time [flops/cycles]

Memory performance
[bytes/sec]

clock frequency of memory [Hz] X
channels x 8 [bytes/cycles]

5. Comparing Two Implementations between Cray-style and IEEE-style

N =4,092,000 for vector operations, N = 2,500 for y = Ax.

Cray style Floating-Point Memory Operational Execution Time PlslrformarO\Ic/e p fRatio of ¢ -
Before acceleration Operations References Intensity Serial / Accelerated Speed-up UpSZiuBrsund SLSLTSQEidO After aCCEIeratlon
(Compute bound) [flops] [bytes] [flops/bytes] [msec] (Gflops/sec] (%] (memory bOund)
y=x+y «=11N 3NX16 =~ 023 <= 11/83=~ 1.3 5.4/ 7.8 69.5
x = x + xheavy11N 2Nx16 (same 0.34 (long) 11/5.4(same 2.0 8.3/11.7 71.2
_ y=ax+y 918N 3INx16 € 0.38 26/8.44 3.1 8.8/12.8 68.6 1 E :
xec. times for all

-l Exec. times for all a=x y@lSN 2NX16 7' ¢ 0.56 m 32/5. 27/\ 6.2 14.2/19.1 74.3 sperations denend on
operations depend on = xTx_418N Nx16 ¢ 113 9 32/2.8¢ 114 26.3/38.5 68.3 P P
floating-point operations. y Ax 18N2 (N2+2N) x16my 1.13 32/4.4 7.3 25.6/38.5 66.4 memory references.

_ y=x+y 20N 3Nx16 0.42 16 /7.8 2.1 10.5/14.2 73.9 :

- EXxec. time]CO" X=x+x 20N 2N X16 0.63 / 16 /5.1 \ 31 16.2/21.3 75.9 - _Exelc. t'Tihfor th
takes 1.5 times than that [, — .., [77w 3Nx16 | 056 —_30/87 | 34 12.7/19. 66.3 IS almost the same wi
for Cray-style. « = x"yheavyp7N INx16 (same 0.84 (IoNg) 45/50/528Me 90 20.5/28.8 71.2 that for Cray-style.

B = xTx ‘ 27N Nx16 7 1.69 44/3.3] 13.3 33.6/57.5 58.4
01 Performances do not depend | v = 4% 27N? (N?+2N) x164 1.69 53 /4.3 123 39.2/57.5 68.2 J Performances are depending
on operational intensity. on operational intensity.
128 | | |
@ After acceleration (memory bound)
64 A Before acceleration (compute bound) y = Ax -
— B=x"x
@ 32 y=ax+y qg=xTy -
)
5 16 ® :xf=x+xA /\Q | You can use DD addition in Cray-style and IEEE-
5 ANV style with parallelization in MuPAT on MATLAB.
g 8f -
is much % “ I Accelerated DD operations can be
— operational intensity:, 2f : The detail for MuPAT is written in
1 | | | | | our web page !
1/16 1/8 1/4 1/2 1 2 4 URL of MuPAT

Operational Intensity [flop/byte]

References

[1] S. Kikkawa, T. Saito, E. Ishiwata, and H. Hasegawa. 2013. Development and acceleration of multiple precision arithmetic toolbox MuPAT for
Scilab. JSIAM Letters 5 (2013), 9-12.

[2] Y. Hida, X. S. Li, and D. H. Bailey. 2000. Quad-Double Arithmetic: Algorithms, Implementation, and Application. Technical Report LBNL-46996.
[3] X. S. Li, J. W. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan, S. Y. Kang, A. Kapur, M. C. Martin, B. J. Thompson,

T. Tung, and D. J. Yoo. 2002. Design, implementation and testing of extended and mixed precision BLAS. ACM Trans. Math. Softw. 28, 2
(June 2002), 152-205.

[4] Intel. 2019. Intel Intrinsics Guides. Retrieved November 11, 2019 from https://software.intel.com/sites/landingpage/IntrinsicsGuide/

|

|

I [5] L. Dagum and R. Menon. 1998. OpenMP: An Industry-Standard API for Shared-Memory Programming. IEEE Comput. Sci. Eng. 5, 1
i} (January 1998), 46-55.
I

)

|

[6] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: an insightful visual performance model for multicore
architectures. Commun. ACM 52, 4 (April 2009), 65-76.

