
5. Comparing Two Implementations between Cray-style and IEEE-style

Floating-Point
Operations

[flops]

Memory
References

[bytes]

Operational
Intensity

[flops/bytes]

Execution Time
Serial / Accelerated

[msec]
Speed-up

Performance
Measured /

Upper Bound
[Gflops/sec]

Ratio of
Performance to

Upper Bound
[%]

𝒚 = 𝒙 + 𝒚 11𝑁 3𝑁×16 0.23 11 / 8.3 1.3 5.4 / 7.8 69.5
𝒙 = 𝒙 + 𝒙 11𝑁 2𝑁×16 0.34 11 / 5.4 2.0 8.3 / 11.7 71.2
𝒚 = 𝛼𝒙 + 𝒚 18𝑁 3𝑁×16 0.38 26 / 8.4 3.1 8.8 / 12.8 68.6
𝛼 = 𝒙𝑇𝒚 18𝑁 2𝑁×16 0.56 32 / 5.2 6.2 14.2 / 19.1 74.3
𝛽 = 𝒙𝑇𝒙 18𝑁 𝑁×16 1.13 32 / 2.8 11.4 26.3 / 38.5 68.3
𝒚 = 𝐴𝒙 18𝑁2 (𝑁2+2𝑁) ×16 1.13 32 / 4.4 7.3 25.6 / 38.5 66.4

𝑁 = 4,092,000 for vector operations, 𝑁 = 2,500 for 𝒚 = 𝐴𝒙.

𝒚 = 𝒙 + 𝒚 20𝑁 3𝑁×16 0.42 16 / 7.8 2.1 10.5 / 14.2 73.9
𝒙 = 𝒙 + 𝒙 20𝑁 2𝑁×16 0.63 16 / 5.1 3.1 16.2 / 21.3 75.9
𝒚 = 𝛼𝒙 + 𝒚 27𝑁 3𝑁×16 0.56 30 / 8.7 3.4 12.7 / 19.2 66.3
𝛼 = 𝒙𝑇𝒚 27𝑁 2𝑁×16 0.84 45 / 5.0 9.0 20.5 / 28.8 71.2
𝛽 = 𝒙𝑇𝒙 27𝑁 𝑁×16 1.69 44 / 3.3 13.3 33.6 / 57.5 58.4
𝒚 = 𝐴𝒙 27𝑁2 (𝑁2+2𝑁) ×16 1.69 53 / 4.3 12.3 39.2 / 57.5 68.2

1/16 1/8 1/4 1/2 1 2 4
Operational Intensity [flop/byte]

1

2

4

8

16

32

64

128

Pe
rfo

rm
an

ce
 [G

flo
p/

se
c]

• AVX2 [4] instructions can process four double-precision data in one unit of time.
• OpenMP [5] allows thread-level parallelism on shared memory for a multicore environment.

same

𝒚 = 𝒙 + 𝒚

Operational intensity
[flops/bytes]

double precision
floating-point operations [flops] /

memory references [bytes]
Upper bound of

performance
[Gflops/sec]

min(computational performance,
memory performance
× operational intensity)

𝒙 = 𝒙 + 𝒙

𝒚 = 𝑎𝒙 + 𝒚 𝛼 = 𝒙-𝒚

𝛽 = 𝒙-𝒙
𝒚 = 𝐴𝒙

long same

halfsame same

• Operational intensity hits the diagonal line:
the operation is memory bound

• Operational intensity hits the horizonal line:
the operation is compute bound

same

half

sameheavy

CPU: Intel Core i7 7820HQ, 2.9 GHz processor
Memory: LPDDR-2133

Environment

1/16 1/8 1/4 1/2 1 2 4
Operational Intensity [flop/byte]

1

2

4

8

16

32

64

128

Pe
rfo

rm
an

ce
 [G

flo
p/

se
c]

AVX2 + OpenMP
AVX2 only, OpenMP only
Serial

𝒚
=
𝒙
+
𝒚

𝒚
=
𝒙
+
𝒚

𝒙
=
𝒙
+
𝒙

𝒙
=
𝒙
+
𝒙

𝒚
=
𝛼𝒙

+
𝒚

𝒚
=
𝛼𝒙

+
𝒚

𝛼
=
𝒙-
𝒚

𝛼
=
𝒙-
𝒚

𝒚
=
𝐴𝒙

𝛽
=
𝒙-
𝒙

𝒚
=
𝐴𝒙

𝛽
=
𝒙-
𝒙

These are memory bound

when using AVX2 & OpenMP

s e1 … e11 m1 … m52DD
s e1 … e15 m1 … m112IEEE 754 Quadruple

s e1 … e11 m1 … m52

𝑎 = 𝑎./ + 𝑎01
A DD number 𝑎 is represented by a combination of two double-precision numbers 𝑎./ and 𝑎01,

There are two implementations of DD addition, called Cray-style and IEEE-style [2].

Error bound 𝐷𝐷𝑎𝑑𝑑 𝑎, 𝑏 = (1 + 𝛿9)𝑎 + (1 + 𝛿;)𝑏
𝑤𝑖𝑡ℎ 𝛿9 , |𝛿;| ≤ 𝜖CC

Cray-style
double-precision

operations 11 20

𝐷𝐷𝑎𝑑𝑑 𝑎, 𝑏 = 1 + 𝛿 𝑎 + 𝑏
𝑤𝑖𝑡ℎ 𝛿 ≤ 2𝜖CC , 𝜖CC = 2D9EF

Algorithm

� � �� ���� �		����
 ��� ��
� � ��� � ���
� � � � ���

� � ��� � � � �

� �
� � ��� � �

� �
� � ����� ����
��� � � �
�
��� �
� � ���� � ��

1
2
3
4
5
6
7

	 � �� ���� �

�
�� ��� ��
� � ��� � ���
� � � � ���
�� � ��� � � � �
�� � �� � ���� � ��
� � ��� � ���
� � � � ���
�� � ��� � � � �
�� � �� � ��� � �
�� � �� � �
� � � � ��

�� � �� � � � �
�� � �� � ��

	�� � �� � �	�� � ��
	�� � � � ��

	 � �� ���� �

�
�� ��� ��
� � ��� � ���
� � � � ���
�� � ��� � � � �
�� � �� � ���� � ��
� � ��� � ���
� � � � ���
�� � ��� � � � �
�� � �� � ��� � �
�� � �� � �
� � � � ��

�� � �� � � � �
�� � �� � ��

	�� � �� � �	�� � ��
	�� � � � ��

1
2
3
4
5
6
7

8
9
10
11
12
13
14

heavy

accurate

cheap

normal

more accurate, but
not widely used,
due to computation
cost [3].

[2] Y. Hida, X. S. Li, and D. H. Bailey. 2000. Quad-Double Arithmetic: Algorithms, Implementation, and Application. Technical Report LBNL-46996.

[1] S. Kikkawa, T. Saito, E. Ishiwata, and H. Hasegawa. 2013. Development and acceleration of multiple precision arithmetic toolbox MuPAT for
Scilab. JSIAM Letters 5 (2013), 9-12.

[4] Intel. 2019. Intel Intrinsics Guides. Retrieved November 11, 2019 from https://software.intel.com/sites/landingpage/IntrinsicsGuide/

[5] L. Dagum and R. Menon. 1998. OpenMP: An Industry-Standard API for Shared-Memory Programming. IEEE Comput. Sci. Eng. 5, 1
(January 1998), 46-55.

• To reduce rounding errors in floating-point arithmetic, the use of high-precision arithmetic is effective.
• Our team developed MuPAT, an open-source interactive Multiple Precision Arithmetic Toolbox [1] for MATLAB and Scilab.
• MuPAT uses the DD (Double-Double) algorithm [2], which is based on a combination of double-precision arithmetic operations and enables quasi quadruple-precision arithmetic.
• We accelerate DD vector and matrix operations by using AVX2 and OpenMP, and achieve higher performance for heavier DD operations.
• We found that some DD operations can be computed more accurately without additional execution time in parallel processing environment.

More Accurate Computation for Double-Double Arithmetic
without Additional Execution Time by Parallel Processing

Hotaka Yagi* Emiko Ishiwata* Hidehiko Hasegawa†

*Tokyo University of Science, Japan †University of Tsukuba, Japan

After acceleration (memory bound)
Before acceleration (compute bound)

[3] X. S. Li, J. W. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan, S. Y. Kang, A. Kapur, M. C. Martin, B. J. Thompson,
T. Tung, and D. J. Yoo. 2002. Design, implementation and testing of extended and mixed precision BLAS. ACM Trans. Math. Softw. 28, 2
(June 2002), 152–205.

You can use DD addition in Cray-style and IEEE-
style with parallelization in MuPAT on MATLAB.

Accelerated DD operations can be
use in multi-core environment.

The detail for MuPAT is written in
our web page !

heavy long

URL of Abstract

Cray-style
IEEE-style

[6] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: an insightful visual performance model for multicore
architectures. Commun. ACM 52, 4 (April 2009), 65–76.

Performance
[flops/sec]

double precision
floating-point operations [flops] /

execution time[sec]
Computational
performance
[flops/sec]

clock frequency of CPU [Hz] ×
flops can be computed

in one unit of time [flops/cycles]
Memory performance

[bytes/sec]
clock frequency of memory [Hz] ×

channels × 8 [bytes/cycles]

Operational intensities
of IEEE-style
are higher !!

mem com

Before acceleration
(compute bound)

q Exec. times for all
operations depend on
floating-point operations.

q Exec. time for IEEE-style
takes 1.5 times than that
for Cray-style.

q Performances do not depend
on operational intensity.

After acceleration
(memory bound)

q Exec. times for all
operations depend on
memory references.

q Exec. time for IEEE-style
is almost the same with
that for Cray-style.

q Performances are depending
on operational intensity.

Roofline is a visual performance model that sets
upper bound of performance depending on
operational intensity and hardware.

IEEE-style is much
accelerated depending on
operational intensity.

URL of MuPAT

mem com

mem com

com

mem

1.		#pragma	omp for
2. 𝑓𝑜𝑟 (𝑗 = 0; 𝑗 < 𝑛; 𝑗 + +)
3. 𝑓𝑜𝑟 𝑖 = 0; 𝑖 < 𝑛; 𝑖 += 4
4. 𝑦 𝑖 = 𝐷𝐷𝑎𝑑𝑑(𝑦 𝑖 , 𝐷𝐷𝑚𝑢𝑙(𝑎 𝑖, 𝑗 , 𝑥 𝑗))

Since we use MATLAB,
column major order
is unit stride access.
The order of loop should be 𝒋-𝒊.

• Unit stride access is key to use AVX2 load/store instructions.
(The overhead is required for non unit stride access.)

• Parallelizing outer loop by OpenMP can offer much larger workload for each thread.

• We implement two kinds of DD addition: Cray-style and IEEE-style in line 4.

We apply AVX2 for inner loop as in line 3.

We apply OpenMP for outer loop as in line 1, 2.

Algorithm of 𝒚 = 𝐴𝒙

👉

👉

computational order
cannot change !

IEEE-style

1. Introduction

3. Parallelization by AVX2 and OpenMP

2. DD Arithmetic 4. Roofline Model Analysis [6]

References

𝑎01 ≤ 9
;
𝑢𝑙𝑝(𝑎./).

5. Comparing Two Implementations between Cray-style and IEEE-style

