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1. Introduction

To reduce rounding errors in floating-point arithmetic, the use of high-precision arithmetic is effective.

Our team developed MuPAT, an open-source interactive Multiple Precision Arithmetic Toolbox [1] for MATLAB and Scilab.

MuPAT uses the DD (Double-Double) algorithm [2], which is based on a combination of double-precision arithmetic operations and enables quasi quadruple-precision arithmetic.
We accelerate DD vector and matrix operations by using AVX2 and OpenMP, and achieve higher performance for heavier DD operations.

We found that some DD operations can be computed more accurately without additional execution time in parallel processing environment.

2. DD Arithmetic 4. Roofline Model Analysis [6]

A DD number a is represented by a combination of two double-precision numbers a,; and a;,, Roofline is a visual performance model that sets
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3. Parallelization by AVX2 and OpenMP

« AVX2 [4] instructions can process four double-precision data in one unit of time.
« OpenMP [5] allows thread-level parallelism on shared memory for a multicore environment.

Environment

CPU: Intel Core i7 7820HQ, 2.9 GHz processor
Memory: LPDDR-2133

Algorithm of y = Ax

1. #pragma omp for

2. for(j =0;j <n;j++)
3.
4,

for(i=0;i <n;i+=
y(i) = DDadd(y(i), DDmul(a(i,j),x()))
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Since we use MATLAB,
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< We apply AVX2 for inner loop as in line 3.

» Parallelizing outer loop by OpenMP can offer much larger workload for each thread.
" We apply OpenMP for outer loop as in line 1, 2.

« We implement two kinds of DD addition: Cray-style and IEEE-style in line 4.

The order of loop should be j-i.
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5. Comparing Two Implementations between Cray-style and IEEE-style

N =4,092,000 for vector operations, N = 2,500 for y = Ax.
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