

# More Accurate Computation for Double-Double Arithmetic without Additional Execution Time by Parallel Processing



Emiko Ishiwata<sup>\*</sup> Hidehiko Hasegawa<sup>†</sup> Hotaka Yagi<sup>\*</sup> \*Tokyo University of Science, Japan <sup>†</sup>University of Tsukuba, Japan

### **1. Introduction**

- To reduce rounding errors in floating-point arithmetic, the use of high-precision arithmetic is effective.
- Our team developed MuPAT, an open-source interactive Multiple Precision Arithmetic Toolbox [1] for MATLAB and Scilab.
- MuPAT uses the DD (Double-Double) algorithm [2], which is based on a combination of double-precision arithmetic operations and enables quasi quadruple-precision arithmetic.
- We accelerate DD vector and matrix operations by using AVX2 and OpenMP, and achieve higher performance for heavier DD operations.
- We found that some DD operations can be computed more accurately without additional execution time in parallel processing environment.

# **2. DD Arithmetic**

#### A DD number a is represented by a combination of two double-precision numbers $a_{hi}$ and $a_{lor}$ **Roofline** is a **visual performance model** that sets upper bound of performance depending on $|a_{lo}| \leq \frac{1}{2} ulp(a_{hi}).$ a $a_{hi}$ $a_{lo}$ operational intensity and hardware. s $e_1 \dots e_{11}$ $m_1 \dots m_{52}$ s $e_1 \dots e_{11}$ $m_1 \dots m_{52}$ DD These are memory bound when using AVX2 & OpenMP IEEE 754 Quadruple s e<sub>1</sub> ... e<sub>15</sub> m<sub>1</sub> ... m<sub>112</sub> 128 There are two implementations of DD addition, called **Cray-style** and **IEEE-style** [2]. 64 [Gflop/sec] 16 more accurate, but **Cray-style IEEE-style** not widely used, # double-precision due to computation 200 cheap 11 heavy

| operations                                         |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                              | JCe            | VV -            |              |                         | Operational i                    | Intensities   |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|--------------|-------------------------|----------------------------------|---------------|
| Error bound                                        | DDadd $(a, b) = (1 + \delta_1)a + (1 + \delta_2)a$                                                                                                                                                                                                                                                  | )b DDadd (a, b                                                                                                                                                                                                                                     | $b) = (1+\delta)(a+b)$                                                                                                                                                                                                       | 8 a            |                 |              |                         | of IEEE                          | -style        |
|                                                    | normal with $ \delta_1 ,  \delta_2  \leq \epsilon_{dd}$                                                                                                                                                                                                                                             | accurate with $ \delta  \leq$                                                                                                                                                                                                                      | $\leq 2\epsilon_{dd}$ , $\epsilon_{dd}=2^{-105}$                                                                                                                                                                             | luoju 4        | mer             | ncom         |                         | are high                         | ner !!        |
| Algorithm<br>computational orde<br>cannot change ! | $1 \qquad s = a_{hi} \oplus b_{hi}$ $2 \qquad v = s \oplus a_{hi}$ $0 \qquad 3 \qquad eh = a_{hi} \oplus (s \oplus v)$ $4 \qquad eh = eh \oplus (b_{hi} \oplus v)$ $5 \qquad eh = eh \oplus (a_{lo} \oplus b_{lo})$ $6 \qquad c_{hi} = s \oplus eh$ $7 \qquad c_{lo} = eh \oplus (c_{hi} \oplus s)$ | $1  s = a_{hi} \oplus b_{hi}$ $2  v = s \bigoplus a_{hi}$ $3  eh = a_{hi} \bigoplus (s \bigoplus v)$ $4  eh = eh \oplus (b_{hi} \bigoplus v)$ $5  t = a_{lo} \oplus b_{lo}$ $6  v = t \bigoplus a_{lo}$ $7  el = a_{lo} \bigoplus (t \bigoplus v)$ | 8 $el = el \oplus (b_{lo} \oplus v)$<br>9 $eh = eh \oplus t$<br>10 $t = s \oplus eh$<br>11 $eh = eh \oplus (t \oplus s)$<br>12 $el = el \oplus eh$<br>13 $c_{hi} = t \oplus el$<br>14 $c_{lo} = el \oplus (c_{hi} \oplus t)$ | e<br>1<br>1/16 | 1/8<br>peration | 1/4<br>Opera | 1/2<br>tional Intensity | 1<br>(flop/byte]<br>s the diagon | 2<br>al line: |

## 3. Parallelization by AVX2 and OpenMP

- AVX2 [4] instructions can process four double-precision data in one unit of time.
- OpenMP [5] allows thread-level parallelism on shared memory for a multicore environment.

### Algorithm of y = Ax

Horagma amp for

**Operational intensity hits the horizonal line:**  $\bullet$ the operation is **compute bound** 

**4. Roofline Model Analysis** [6]

### Environment

CPU: Intel Core i7 7820HQ, 2.9 GHz processor Memory: LPDDR-2133

| • Unit stride access is key to<br>• Unit stride access is key to<br>(The overhead is required f<br>• Parallelizing outer loop by C<br>• We apply OpenMP for | = 4)<br>y(i), DDmul(a(i, j), x(j)<br>use AVX2 load/store i<br>or non unit stride acc<br>ner loop as in line 3.<br>OpenMP can offer muc<br>outer loop as in line 1, | Since we column is unit a The orde                                               | e use MAILAB,<br>major order<br>stride access.<br>er of loop should t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | be j-i.                      | Operatio<br>[flop<br>Upper<br>perfo<br>[Gflo<br>C<br>Mem | nal intensity<br>s/bytes]<br>bound of<br>ormance<br>ops/sec]<br>Performance<br>[flops/sec]<br>computational<br>performance<br>[flops/sec] | <pre># double precision floating-point operations [flops] / # memory references [bytes] min(computational performance,     memory performance     × operational intensity)  # double precision floating-point operations [flops] /     execution time[sec] Clock frequency of CPU [Hz] ×     # flops can be computed in one unit of time [flops/cycles] Clock frequency of memory [Hz] × </pre> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • we implement two kinds of                                                                                                                                 | DD addition: Cray-st                                                                                                                                               | yie and IEEE-st                                                                  | yle in line 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                                                          | [bytes/sec]                                                                                                                               | # channels × 8 [bytes/cycles]                                                                                                                                                                                                                                                                                                                                                                   |
| 5.                                                                                                                                                          | <b>Comparing</b> Two                                                                                                                                               | o Implement                                                                      | ations betwe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | en Cray                      | /-style                                                  | and IEE                                                                                                                                   | E-style                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                             |                                                                                                                                                                    |                                                                                  | N = 4.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 92.000 for vecto             | or operations.                                           | N = 2.500 for $v =$                                                                                                                       | $= A \mathbf{x}.$                                                                                                                                                                                                                                                                                                                                                                               |
| Before acceleration<br>(compute bound)                                                                                                                      | Cray-styleFloating-Point<br>OperationsIEEE-style[flops] $v = r + v$ $11N$                                                                                          | Memory Operation<br>References Intension<br>[bytes] [flops/by<br>3 N × 16 • 0.23 | onal Execution Time<br>ity Serial / Accelerated<br>/tes] [msec]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F<br>Speed-up<br>L           | erformance<br>Measured /<br>pper Bound<br>Gflops/sec]    | Ratio of<br>Performance to<br>Upper Bound<br>[%]                                                                                          | After acceleration<br>(memory bound)                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                             | $y = x + y$ $x = x + x$ heavy11N $y = \alpha x + y$ 11N                                                                                                            | $2N \times 16$ same 0.32<br>$3N \times 16$ 0.32                                  | 4 long 11/6.5<br>4 long 11/5.4 sam<br>3 26/8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ne 2.0<br>3.1                | 3.4 / 7.8<br>3.3 / 11.7<br>3.8 / 12.8                    | 71.2<br>68.6                                                                                                                              | D. Even time on for all                                                                                                                                                                                                                                                                                                                                                                         |
| Exec. times for all operations depend on                                                                                                                    | $\alpha = \mathbf{x}^T \mathbf{y}$ same 18N<br>$\beta = \mathbf{x}^T \mathbf{x}$ 18N                                                                               | 2N×16 half 0.56<br>N×16 1.13                                                     | 5 same 32 / 5.2 ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | alf 6.2 1<br>11.4 2          | 4.2 / 19.1<br>5.3 / 38.5                                 | 74.3<br>68.3                                                                                                                              | operations depend on                                                                                                                                                                                                                                                                                                                                                                            |
| Exactime for TEEE-etule                                                                                                                                     | y = Ax $y = x + y$ $20N$                                                                                                                                           | $(V^2+2N) \times 16$ 1.13<br>$3N \times 16$ 0.42                                 | 3 32 / 4.4<br>2 16 / 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.3     2.       2.1     1   | 5.6 / 38.5<br>0.5 / 14.2                                 | 66.4<br>73.9                                                                                                                              | Exec. time for IEEE-style                                                                                                                                                                                                                                                                                                                                                                       |
| takes <b>1.5 times</b> than that                                                                                                                            | $x = x + x 	 20N$ $y = \alpha x + y 	 27N$ $x = x^{T} x (beavy) 27N$                                                                                               | $2N \times 16$ 0.63<br>$3N \times 16$ 0.56<br>$2N \times 16$ Same 0.86           | $\begin{array}{c c} 3 & 16 \\ 5 & 30 \\ 6 & 30 \\ 7 & 1000 \\ 4 \\ 6 & 5 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.1 1<br>3.4 1               | 5.2 / 21.3<br>2.7 / 19.2                                 | 75.9<br>66.3<br>71.2                                                                                                                      | is almost the <b>same</b> with that for <b>Crav-style</b> .                                                                                                                                                                                                                                                                                                                                     |
| Derformances do not depend                                                                                                                                  | $\alpha = x^{T} y$ $\beta = x^{T} x$ $\gamma = Ax$ $27N$ $27N^{2}$                                                                                                 | $N \times 16$ $1.69$<br>$N^2 + 2N) \times 16$ $1.69$                             | + 45 / 5.0<br>+ 55 / | 9.0 20<br>13.3 32<br>12.3 32 | 3.6 / 28.8<br>3.6 / 57.5<br>9.2 / 57.5                   | 71.2<br>58.4<br>68.2                                                                                                                      | Performances are dependin                                                                                                                                                                                                                                                                                                                                                                       |
| on operational intensity.                                                                                                                                   |                                                                                                                                                                    |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |                                                          |                                                                                                                                           | on operational intensity.                                                                                                                                                                                                                                                                                                                                                                       |



128

**You** can use DD addition in Cray-style and IEEEstyle with parallelization in **MuPAT** on MATLAB.

Accelerated DD operations can be use in multi-core environment.

The detail for **MuPAT** is written in our web page !



URL of MuPAT

| References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| <ol> <li>S. Kikkawa, T. Saito, E. Ishiwata, and H. Hasegawa. 2013. Development and acceleration of multiple precision arithmetic toolbox MuPAT for<br/>Scilab. JSIAM Letters 5 (2013), 9-12.</li> <li>Y. Hida, X. S. Li, and D. H. Bailey. 2000. Quad-Double Arithmetic: Algorithms, Implementation, and Application. Technical Report LBNL-46996.</li> <li>X. S. Li, J. W. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan, S. Y. Kang, A. Kapur, M. C. Martin, B. J. Thompson,<br/>T. Tung, and D. J. Yoo. 2002. Design, implementation and testing of extended and mixed precision BLAS. ACM Trans. Math. Softw. 28, 2<br/>(June 2002), 152–205.</li> </ol> | <ul> <li>[4] Intel. 2019. Intel Intrinsics Guides. Retrieved November 11, 2019 from https://software.intel.com/sites/landingpage/IntrinsicsGuide,</li> <li>[5] L. Dagum and R. Menon. 1998. OpenMP: An Industry-Standard API for Shared-Memory Programming. IEEE Comput. Sci. Eng. 5, 1 (January 1998), 46-55.</li> <li>[6] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: an insightful visual performance model for multicore architectures. Commun. ACM 52, 4 (April 2009), 65–76.</li> </ul> |  |  |  |  |