Test of Iterative Solvers on ITBL

Yoshinari Fukui (RIKEN) Hidehiko Hasegawa (Univ. of Tsukuba)

Test of Iterative Solvers

• TiS is <u>an internet calculator for solving</u> <u>Linear System of Equations Ax = b</u> with preconditioned Krylov subspace methods.

Test of Iterative Solvers

• TiS is a tool for <u>finding appropriate</u> <u>precoditioner and iterative solver</u> for a given Linear System of Equations Ax = bwith no programming effort.

Test of Iterative Solvers

• TiS is a joining project of users, researchers, and ITBL administrator for <u>making a new</u> research community.

Q1: Is it possible that a certain preconditioner and iterative solver is the best for any problem?

Answer: It is impossible. Q2: Are there any public computation services via the internet?

Answer:

Maybe No. At least I do not know.

Test of Iterative Solvers provides:

- Testing some iterative solvers and preconditioners for users' problem
- Public computation service via ITBL Grid portal
- Utilizing given problems for future analysis
- Making a new research community

What is the ITBL?

- Information-Technology-Based Laboratory
- One of Japanese national Grid projects
- Virtual Research Environment – Searching new research style based on IT
- The purpose of ITBL
 - Anywhere
 - Anybody
 - Anytime
 - Chance to meet people
- > Joining institutes: NIMS, NIED, JAXA, JAERI, RIKEN, and JST

Evaluation of iterative solvers and preconditioners for Ax=b

Users:

(Give) Provide their problem A and b

(Take)

Get solution x and a comparison chart

Researchers:

(Give)

Provide their algorithms (Iterative solvers and preconditioners) as a code

(Take)

Get a right to use stored data for future research

(Give)

Provide computing resources for public use

(Take)

Collect and store performance result for comparing computing environments

Data Format MatrixMarket's format and right-hand side (1)(2)(3) % comment % comment % comment N, NNZ N, NNZ N, NNZ b i, j, a_{i.i} b i, j, a_{i,j} h ${x_0}$ $\{x_0\}$ $\{x_0\}$ i, j, a_{i.i} * N is dimension, NNZ is number of Non-Zero elements

Iterative Solvers

- BiCG
- CGS
- BiCGSTAB
- BiCGSTAB(l)
- GPBiCG
- GMRES(k)
- QMR
- Jacobi
- Gauss-Seidel
- SOR
 - LiS by Dr. Kotakemori is used for computation kernel

Preconditioners

- No
- Scaling
- Jacobi
- Incomplete LU
- SSOR
- Hybrid
- I+S type
- SAIMV

- LiS by Dr. Kotakemori is used for computation kernel

How large problem can be solved

- 3D problem with Nx = Ny = Nz = 100 N: number of unknown is 10⁶
- i, j, a_{i,i} ~ Each entry is almost 50 byte
- Case of FDM : 7*50*10^6 ~ 350 Mbyte

The maximum problem size is one million!

How much time is necessary for uploading the problem

Assume 500 Mbyte (N ~ 10^6)

- 1.5 Mbit/sec (ADSL at home) 2,700 sec ~ 45 min ~ 1 hour
- 100 Mbit/sec (very good IT office) 40 sec ~ 1min

How much time is necessary for solving the problem

- It depends on computing environment
- It depends on Grid scheduling
- Only waiting to finish
- Total Time = "Time of basic operation" * "number of iterations"

How much time is necessary for downloading solution and comparison

Solution (N ~ 10⁶) ~ 30 Mbyte Comparison is one PNG file ~ 1Mbyte

- 1.5 Mbit/sec (ADSL at home) 170 sec ~ 3 min
- 100 Mbit/sec (very good IT office) 3 sec

Please use TiS

- Before choosing an appropriate algorithm
- For checking the correctness of your code
- For analyzing the property of your data
- For requesting a new algorithm
- To complete your homework quickly!

Summary

- TiS is a new computation service on ITBL
- Public service (any people, no charge)
- Choose the best solver and preconditioner with no programming effort
- We appreciate your use of TiS as a user or as a researcher, and your comments
- Please visit
 - www.itbl.jp