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Outline

* Product-type methods

o Accelerating polynomials

* Picking up BI-CG part

e Reconstructing from a common BI-CG

e Conclusion
(about accelerating polynomials and Quadruple arithmetic)
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Iterative methods for Nonsymmetric Matrix

* Product-type methods
— Bi-CG (1976)
— CGS (1984, Sonneveld)
— BI-CGSTAB (1989, van der Vorst)
— GPBIi-CG(1992, Zhang)
— Bi-CGSTAB(l) (1993)

e Others
— GCR (1982)
— GMRES (1983)
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Structure of Product-type methods

e Series of residual vectorsin Bi-CG method
PO ST PYRUT (R

o Series of residual vectors in Product-type method
Ho(A)rg, Hi(A)ry, ..., H .(A)r,, ...
accelerated and stabilized by k-th polynomia H,(A)

* BI-CG part in these methods must be samein
Mathematics!
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Residual Vectors

o CGS: 1 CC5=R (A)r,
R, (A) isResidua polynomial of Bi-CG method
o Bi-CGSTAB: 1, > = Q,(A) r,
QoA ) =1 Quia(A ) =(1-00 A ) Qu(A )
W, minimizesr,,, > =t, —w At
o GPBi-CG:r SP=H,(A)r,
HoA ) =1 Hy(A ) =1-€
HeesO ) =(140 & &) HA ) -0 Hi (L)
n.and¢&  minimize r,, %° =t.—n y.—¢& At
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Test problem

Toeplitz Matrix, N = 200, v = 1.7
o 4 :

0
A= |7

- O o

e
.[‘Jr—t

Right-hand side b = (1,1,---, 1)
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Convergence history

Basic methods - Double-arithmetic
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Why?

* Wewish that Product-type methods show good
convergence history, but some of them could not.

» Wetry to compare accelerating polynomials R (A),
Qk(A), and H,(A).
— Reconstructing Bi-CG from EACH methods
— Reconstructing EACH methods from one Bi-CG
(Bi-CG part in each methods should be same in Mathematics)

* \We compute them in Quadruple-arithmetic.
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Picking up Bi-CG part

 All methods have Bi-CG part in their process

* Wereconstruct Bi-CG process by using aphaand
beta of the CGS, Bi-CGSTAB, and GPBI-CG:

CGS: 1 “> =R (A)r,
Bi-CGSTAB: 1, 3™ = Q(A) 1,

e Bi-CG part must be same in Mathematics, effect
of some errorswill be shown.
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convergence nistory or bi-CG part
( reconstruct Bi-CG using alpha and beta in each methods)

reconstructed BiCG using BiCG-part in each methods
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Convergence of Bi-CG part: Quadruple
(_reconstruct Bi-CG using alpha and beta in each methods)

reconstructed BiCG using BiCG-part in each methods in Quadruple
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How BI-CG part works?

 BI-CGSTAB converges by an effect of MR part
( BI-CG part is still unstable)

* GPBI-CG makes Bi-CG part stable

e CGSdid not converge in Quadruple arithmetic

 In Quadruple arithmetic, simple Bi-CG is the best
( Bi-CG is much affected by Rounding errors)

* In Quadruple arithmetic, Bi-CG part in Bi-
CGSTAB is bad convergence even if Bi-CG
CONverges.
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Reconstructing from one Bi-CG part

Bi-CG part must be same in Mathematics, so we
force being same Numerically.
e We reconstruct each methods based on the same
alpha and beta of the original Bi-CG:

CGS. 1, “c> =R (A)r,

Bi-CGSTAB: 1, STA = Q (A) 1,

GPBi-CG : 1, GP =H.(A) r,
* The effect of accelerating polynomialswill be
shown.
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Convergence history based on one Bi-CG
( alphaand betain Bi-CG are used in al methods)
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Convergence history based on one Bi-CG
(Quadruple arithmetic is used for Bi-CG)

alpha and beta based on BiCG in Quadruple-arithmetic
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Convergence history based on one BI-CG
(Quadruple arithmetic isused for ALL)

Basic methods - Quadruple arithmetic
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How accelerating polynomial works

e Qudaruple arithmetic works very well.

 |f enough accuracy was provided, Bi-CG wasthe
best.

e BI-CGSTAB and GPBI-CG work wdll.

 |In Quadruple arithmetic, sometimes it works as
braking not as accelerating.

e GPBI-CG isrobust in both two conditions.

e CGS does not work 1n both conditions because of
“sguared”.
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Conclusion

1. Quadruple arithmetic is very powerful tool for
accelerating and stabilizing, also easy and ssmple.

2. Effects of accelerating polynomials are not same.
It depends on Computing Accuracy.

GPBI-CG converges well, and is robust.
Bi-CGSTAB converges well, but is not robust.
Bi-CG isthe best in more accurate environment.
CGS should be out of consideration.

L
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AppendiXx

 We believe that high performance should be used

not only for “Speeding” but also the “ Quality of
Computation”.

« Effectiveness of Iterative algorithms strongly
depends on the Computing Accuracy.

e Quadruple arithmetic operation is not expensive in
HighPerformance Computers and classic machines.
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