# Utilizing Quadruple-Precision Floating Point Arithmetic Operation for the Krylov Subspace Methods

## Outline

- Krylov Subspace methods
- Results of Accurate Computing
- Tools for Accurate Computing
- Cost of Quadruple Floating Point Arithmetic
- Conclusion

## Krylov Subspace methods

• Series of residual vectors  $r_0, r_1, r_2, \ldots, r_k, \ldots$ 

• Finding a basis: they should be orthogonal

• Converge at most N iterations if its computation is accurate

- What happens to Krylov Subspace Methods in Accurate Computing
- We Compare Convergence History in different Mantissa's bit for changing Computing Accuracy
- Omni Fortran Compiler is used for this purpose

http://phase.hpcc.jp/Omni/

## Test problem

$$\begin{array}{l} \text{Foeplitz Matrix, N = 200, $\gamma = 1.7$} \\ A := \begin{bmatrix} 2 & 1 & & \\ 0 & 2 & 1 & \\ \gamma & 0 & 2 & 1 & \\ \gamma & 0 & 2 & \ddots & \\ & \ddots & \ddots & \ddots & \ddots \end{bmatrix} \end{array}$$

Right-hand side 
$$b = (1, 1, \dots, 1)^T$$

#### **Condition Number**

|          | 1.3                 | 1.7                 | 2.1                 | 2.5                 |
|----------|---------------------|---------------------|---------------------|---------------------|
| 1-norm   | 3.937               | 10.53               | 24.93               | 1936                |
| 2-norm   | 6.463               | 6.65                | 16.00               | 697.                |
| smallest | 1.2162 +<br>1.0105i | 1.1044 +<br>0.7922i | 0.8625 +<br>0.6593i | 0.6649 +<br>0.4963i |
| largest  | 4.1091              | 4.3845              | 4.6625 +<br>0.0282i | 4.9258 +<br>0.0336i |

#### BiCG Gamma = 1.3



#### BiCG Gamma = 1.3



## Alpha in BiCG Gamma = 1.3



#### Beta in BiCG Gamma = 1.3



SIAM Conference on Applied Linear Algebra 2003

## BiCG Gamma = 1.7



## BiCG Gamma = 2.1



### BiCG Gamma = 2.5



### BiCG Gamma = 2.5



## Alpha in BiCG Gamma = 2.5



#### Beta in BiCG Gamma = 2.5



SIAM Conference on Applied Linear Algebra 2003

#### CGS Gamma = 1.3



### BiCGSTAB Gamma = 1.3



#### BiCGSTAB Gamma = 2.5



SIAM Conference on Applied Linear Algebra 2003

#### GPBiCG Gamma = 2.5



#### Observations

- Fast and smooth convergence are gained from More accurate computations.
- Required Mantissa is based on the problems: BiCG 53 bit for Gamma = 1.3 100 bit for 1.7 200 bit for 2.1 200 bit for 2.5
- Required Mantissa depends on Algorithms: BiCG 200 bit and 190 iterations CGS 300 bit and 160
  x BiCGSTAB 1500 bit and 210
  x GPBiCG 300 bit and 310 (Gamma = 2.5)

#### Tools for Accurate Computing

- Multiple Precision Package (Gnu MP)
- Symbolic Computing (Computer Algebra)
- Interval Arithmetic
- Quadruple Floating-Point Operations

#### Sun Enterprise 3000



|                         | Double<br>with ILU               | Quad.            | ratio |
|-------------------------|----------------------------------|------------------|-------|
| MATVEC                  | 4.69*10 <sup>-3</sup><br>(17.5%) | 0.149<br>(24.7%) | 31.7  |
| MATVECT                 | 4.89*10 <sup>-3</sup><br>(18.2%) | 0.159<br>(26.4%) | 32.5  |
| DAXPY<br>DDOT<br>DNORM2 | 7.47*10 <sup>-3</sup><br>(27.8%) | 0.290<br>(48.1%) | 38.82 |
| PSOLVE                  | 4.87*10 <sup>-3</sup><br>(18.1%) |                  |       |
| PSOLVET                 | 4.92*10 <sup>-3</sup><br>(18.3%) |                  |       |
| Total                   | 2.68*10 <sup>-2</sup>            | 0.602            | 22.4  |

## HITACHI MP5800



|                         | Double<br>with ILU                | Quad.                             | ratio |
|-------------------------|-----------------------------------|-----------------------------------|-------|
| MATVEC                  | 0.135*10 <sup>-2</sup><br>(16.9%) | 0.468*10 <sup>-2</sup><br>(27.3%) | 3.4   |
| MATVECT                 | 0.134*10 <sup>-2</sup><br>(16.8%) | 0.472*10 <sup>-2</sup><br>(27.6%) | 3.5   |
| DAXPY<br>DDOT<br>DNORM2 | 0.244*10 <sup>-2</sup><br>(30.6%) | 0.719*10 <sup>-2</sup><br>(42.0%) | 2.9   |
| PSOLVE                  | 0.146*10 <sup>-2</sup><br>(18.3%) |                                   |       |
| PSOLVET                 | 0.135*10 <sup>-2</sup><br>(16.9%) |                                   |       |
| Total                   | 0.796*10 <sup>-2</sup>            | 0.171*10 <sup>-1</sup>            | 2.1   |

## Fujitsu VPP800

#### n=10000

|                         | Double<br>with ILU               | Quad.                            | ratio |
|-------------------------|----------------------------------|----------------------------------|-------|
| MATVEC                  | 3.92*10 <sup>-5</sup><br>(1.06%) | 4.52*10 <sup>-3</sup><br>(11.9%) | 115   |
| MATVECT                 | 3.93*10 <sup>-5</sup><br>(1.07%) | 4.52*10 <sup>-3</sup><br>(11.9%) | 115   |
| DAXPY<br>DDOT<br>DNORM2 | 1.21*10 <sup>-3</sup><br>(32.9%) | 2.86*10 <sup>-2</sup><br>(75.6%) | 23.6  |
| PSOLVE                  | 1.35*10 <sup>-3</sup><br>(36.7%) |                                  |       |
| PSOLVET                 | 1.03*10 <sup>-3</sup><br>(28.0%) |                                  |       |
| Total                   | 3.67*10 <sup>-3</sup>            | 3.78*10 <sup>-2</sup>            | 10.2  |

## HITACHI SR8000 n=10000

|                         | Double<br>with ILU                | Quad.                             | ratio |
|-------------------------|-----------------------------------|-----------------------------------|-------|
| MATVEC                  | 0.101*10 <sup>-3</sup><br>(3.5%)  | 0.612*10 <sup>-3</sup><br>(11.3%) | 6.0   |
| MATVECT                 | 0.996*10 <sup>-4</sup><br>(3.4%)  | 0.601*10 <sup>-3</sup><br>(11.1%) | 6.0   |
| DAXPY<br>DDOT<br>DNORM2 | 0.781*10 <sup>-3</sup><br>(27.2%) | 0.419*10 <sup>-2</sup><br>(77.5%) | 5.3   |
| PSOLVE                  | 0.738*10 <sup>-3</sup><br>(25.7%) |                                   |       |
| PSOLVET                 | 0.115*10 <sup>-2</sup><br>(40.9%) |                                   |       |
| Total                   | 0.287*10 <sup>-2</sup>            | 0.540*10 <sup>-2</sup>            | 1.8   |

#### Double with ILU vs Quadruple

|                                   | Double<br>with ILU     | Quad.                  | ratio |
|-----------------------------------|------------------------|------------------------|-------|
| Sun<br>( WS )                     | 0.268*10 <sup>-1</sup> | 0.602                  | 22.4  |
| VPP500<br>( Vector )              |                        |                        | _     |
| VPP300 <sup>*</sup><br>( Vector ) | 0.341*10 <sup>-1</sup> | 6.63                   | 194   |
| VPP800<br>( Vector )              | 0.367*10 <sup>-2</sup> | 0.378*10 <sup>-1</sup> | 10.2  |
| SR8000<br>( SMP )                 | 0.287*10 <sup>-2</sup> | 0.540*10 <sup>-2</sup> | 1.8   |
| MP5800<br>( Mainframe )           | 0.796*10 <sup>-2</sup> | 0.171*10 <sup>-1</sup> | 2.1   |

## Conclusion (tentative)

- 1. Fast and Smooth Convergence are gained from Accurate Computing.
- 2. Quadruple arithmetic is economically powerful tool, also easy and simple to use.
- 3. The best Algorithm varies depending on Computational Environment.
- 4. The simple Bi-CG is good for more Accurate Computing Environment.

#### Future works

- 1. Analysis: alpha, beta and other vectors.
- 2. Real problems:
- 3. Refinement of Implementation:
- 4. Find a good tool: easy and effective

#### Advertisement

- High performance should be used not only for "Speeding" but also "Quality of Computation".
- To test effectiveness of Krylov Subspace Methods, try to change Computing Accuracy.
- Try to use Quadruple Arithmetic in High-Performance Computers and legacy machines.