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Abstract. When floating point arithmetic is used in numerical computation, can-
cellation of significant digits, round-off errors and information loss cannot be
avoided. In some cases it becomes necessary to use multiple precision arithmetic;
however some operations of this arithmetic are difficult to implement within con-
ventional computing environments. In this paper we consider implementation of
a quadruple precision arithmetic environment QuPAT(Quadruple Precision Arith-
metic Toolbox) using the interactive numerical software package Scilab as a tool-
box. Based on Double-Double(DD) arithmetic, QuPAT uses only a combination
of double precision arithmetic operations. QuPAT has three main characteristics:
(1) the same operator is used for both double and quadruple precision arithmetic;
(2) both double and quadruple precision arithmetic can be used at the same time,
and also mixed precision arithmetic is available; (3) QuPAT is independent of
which hardware and operating systems are used. Finally we show the effective-
ness of QuPAT in the case of analyzing a convergence property of the GCR(m)
method for a system of linear equations.
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1 Introduction

Floating point arithmetic operations governed by IEEE754 are mainstream on con-
ventional computers. But in floating point arithmetic, we cannot avoid cancellation of
significant digits, round-off errors and information loss. In the case of double precision
floating point numbers, there are approximately 16 (decimal) significant digits. There-
fore, when a system of linear equations is solved by some iterative method, it is known
that stagnation of the residual norm may occur or that the numerical solution may not
converge. To reduce these errors, we need to use multiple precision arithmetic. How-
ever, it is difficult to implement multiple precision arithmetic in ordinary computing
environments without any special hardware.

We consider quadruple precision arithmetic as multiple precision arithmetic. There
is a proposal called Double-Double (DD) for quadruple precision arithmetic. DD is
based on the algorithm for error-free floating point arithmetic by Dekker[2] and Knuth[5].
A DD number is represented by two double precision floating point numbers. QD[1]
and Lis[6] are implementations of DD arithmetic in C and C++. In addition, although
it is not standard, many Fortran compilers have a quadruple precision real number type
‘REAL(KIND =16)’ together with operations on such. The computational cost is high,



however, if we cannot use special hardware. On the other hand, if we do use it, then
code should be rewritten to use quadruple precision arithmetic hardware or library (ex-
cept for Fortran). The rewritten code does not execute in the previous environment (i.e.
without any special hardware or library), and rewritten code is difficult to debug.

However, there does exist an interactive numerical software package Scilab[10].
Scilab is similar to MATLAB, and, moreover, this is free and open source software. In
this paper we implement a quadruple precision arithmetic environment QuPAT (Quadru-
ple Precision Arithmetic Toolbox) using the interactive numerical software package
Scilab as a toolbox.

In Scilab, we can define a new data type and apply operator overloading. Thus, we
define a new data type representing a DD number to expand the double precision arith-
metic environment. Using operator overloading, we can use the same operator for both
double precision arithmetic and quadruple precision arithmetic. We can also use both
double precision arithmetic and quadruple precision arithmetic at the same time, and
thus we can make use of mixed precision arithmetic. QuPAT is implemented only us-
ing Scilab functions, so that QuPAT is independent of hardware and operating systems.
Therefore, Scilab users can easily make use of QuPAT anywhere that it is required.

This paper is organized as follows. Section 2 presents some algorithms for error-free
double precision floating point arithmetic and DD arithmetic. In Section 3, we describe
the way to construct a DD environment on Scilab, the characteristics of QuPAT, and
the computational time for DD arithmetic. In Section 4 we show the effectiveness of
QuPAT for analyzing a convergence property of the GCR(m) method for a system of
linear equations. Section 5 presents a summary and discusses future work.

2 DD arithmetic

We first explain DD arithmetic, which is based on representation using two double
precision floating point numbers and defining four error-free floating point arithmetic
algorithms [2, 5]. Specifically we explain the characteristics and four arithmetic opera-
tions of DD.

2.1 Characteristics of DD arithmetic

A DD number is represented using two double precision floating point numbers. A
real numberα is represented as the DD numberA = (Ahi,Alo), which is defined below:

Ahi = ( α rounded to a double precision number)

Alo = ( (α − Ahi) rounded to a double precision number)

Figure 1 shows the constitution of each DD number in bits and an IEEE754 quadruple
precision floating point number. A DD thus contains two sign bits and a pair of 11 bit
sequences for the exponent parts. But the sign and the exponent part of a DD number
depend only onAhi. The mantissa of a DD number contains in total 104 bits. This is 8
bits less than is required for an IEEE quadruple precision number. A double precision
numberd can be transformed to a DD number by settingAhi = d, Alo = 0. For arith-
metical operations on DD numbers, if the computational result doesn’t fit into a DD
number, then it is rounded to a DD number.
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Figure 1 : Constitution of bits (DD number and IEEE754 quadruple precision number)

2.2 Algorithm for DD arithmetic

For implementation of DD arithmetic, double precision arithmetic should be com-
puted exactly. However, a result of double precision arithmetic does not always fit into
a double precision number. Therefore, we need to express such a number correctly us-
ing two double precision numbers.f ( · ) denotes a computation of double precision
arithmetic, variables of small letter are double precision numbers, variables of capital
letter are DD numbers. We present four algorithms (D1)～(D4) for error-free double
precision arithmetic below (see [3, 4] for details).

Algorithm (D1) - two sum.
The following algorithm computes double precision additions = f (a + b) and error
e = (a+ b) − s. In this way, the sum of two double precision floating point numbers is
represented strictly:a+ b = s+ e.

two sum¶ ³
[s,e] = two sum(a,b)

s= a+ b;
v = s− a;
e= (a− (s− v)) + (b− v);

endµ ´
Algorithm (D2) - fast two sum (for |a| ≥ |b|).
The following algorithm is almost the same as (D1) except for the assumption that
|a| ≥ |b|.

fast two sum¶ ³
[s,e] = f ast two sum(a,b)

s= a+ b;
e= b− (s− a);

endµ ´



Algorithm (D3) - split.
The following algorithm splits a double precision floating point numbera into h andl
whereh contains the higher 26 bits of the mantissa ofa, and l contains the lower 26
bits．

split¶ ³
[h, l] = split (a)

t = 134217729∗ a;
h = t − (t − a);
l = a− h;

endµ ´
Algorithm (D4) - two prod.
The following algorithm computes double precision multiplicationp = f (a × b) and
errore= (a× b) − p. Using (D3), we get the following equality and algorithm :

a× b = f (ah× bh) + f (ah× bl) + f (al × bh) + f (al × bl)

two prod¶ ³
[p,e] = two prod (a,b)

p = a ∗ b;
(ah,al) = split (a);
(bh,bl) = split (b);
e= ((ah∗ bh− p) + ah∗ bl + al ∗ bh) + al ∗ bl;

endµ ´
The four arithmetic operations of DD are defined only using double precision arithmetic
numbers and their computation algorithms (D1)～(D4). Let DD numbersA, B andC be
(Ahi,Alo), (Bhi,Blo) and (Chi,Clo) , respectively.

Algorithm (DD1) - addition.
The following algorithm computes DD additionA+ B.

addition¶ ³
C = add (A, B)

[sh,eh] = two sum(Ahi, Bhi);
[sl,el] = two sum(Alo, Blo);
se= eh+ sl;
[sh′, se′] = f ast two sum(sh, se);
see= se′ + el;
[Chi,Clo] = f ast two sum(sh′, see);

endµ ´



Algorithm (DD2) - subtraction.
The following algorithm computes DD subtractionA− B using DD addition.

subtraction¶ ³
C = sub(A, B)

B∗hi = −Bhi;
B∗lo = −Blo;
C = add (A, B∗);

endµ ´
Algorithm (DD3) - multiplication.
The following algorithm computes DD multiplicationA× B using the equality:

A× B = Ahi× Bhi+ Ahi× Blo+ Alo× Bhi+ Alo× Blo

However, we omitAlo× Blo from the computation to reduce the computation cost.

multiplication¶ ³
C = mul (A, B)

[p1, p2] = two prod (Ahi,Ahi);
p2 = p2+ Ahi ∗ Blo;
p2 = p2+ Alo ∗ Bhi;
[Chi,Clo] = f ast two sum(p1, p2);

endµ ´
Algorithm (DD4) - division.
The following algorithm computes DD division (A÷ B), assumingB , 0. DD division
is based on Newton’s method with an initial valuef (Ahi/Bhi).

division¶ ³
C = div (A, B)

c = Ahi/Bhi;
[p,e] = two prod (c, Bhi);
cc= (Ahi− p− e+ Alo− c ∗ Blo)/Bhi;
[Chi,Clo] = f ast two sum(c, cc);

endµ ´
Table 1 shows the number of double precision operations in the above algorithms, and
Figure 2 shows the relationships among these algorithms.

3 Construction of DD environment on Scilab

Matlab and Scilab[10] are popular software packages for interactive numerical com-
putation. They use double precision arithmetic, which can result in cancellation of sig-



Table 1 : Number of double precision operations
number of each operation
add & sub mul div total

fast two sum 3 0 0 3
two sum 6 0 0 6

split 3 1 0 4
two prod 10 7 0 17

add 20 0 0 20
sub 20 0 0 20
mul 15 9 0 24
div 17 8 2 27

sub

two_sum

divadd mul

fast_two_sum two_prod

split

DD

double

Figure 2 : Relationships among exact double
precision arithmetic algorithms and DD algo-
rithms

nificant digits, round-off errors and information loss. Scilab has almost the same capa-
bility as Matlab; however Scilab is open source and free. Scilab has been developed at
Institut National de Recherche en Informatique et en Automatique (INRIA) in France.

In this paper, using DD, we construct a new environment for quadruple precision
arithmetic QuPAT to reduce numerical errors, using Scilab as a toolbox.

3.1 Definition of data type for DD

Using Scilab, we can define a new data type using the Scilab function ‘tlist’. The
function tlist creates a Scilab object and describes it as ‘tlist(typ, a1, ..., an)’, where
‘typ’ is our chosen name for the data type, and ‘a1, ..., an’ are elements. The values
of a new data type are classified by its name. In this way we treat a data type using a
combination of some data as a class in C++.

In Scilab, double precision numbers are defined by the data type named ‘constant’.
Then, we define a new data type named ‘dd’ to contain DD numbers. To generate a
valuea as an element of the data type ‘dd’, we use the following code:

a = tlist ([‘dd’,‘hi’,‘lo’], ahi, alo ).

Thus, ‘[‘dd’,‘hi’,‘lo’]’ represents the name of the data type and its elements, and ‘ahi’ and
‘alo’ are double precision values in the constant data type. The name of the new data
type is ‘dd’. To refer to the value of the higher (resp. lower) part ahi (resp. alo), we
simply type ‘a.hi’ (resp. ‘a.lo’).

In QuPAT, we define the following function to generate a DD number :

function a = dd(ahi,alo)

a = tlist([’dd’,’hi’,’lo’],ahi,alo);

endfunction

For example, we define ‘a= dd(1,0)’, then the valuable of dd typea becomes 1.
If we transform a valuea from ‘constant’ into ‘dd’, we may use the function ‘d2dd’.

On the other hand, if we transform a valuea from ‘dd’ into ‘constant’, we may refer the
variable ‘a.hi’.

In Scilab, scalars, vectors and matrices are treated in the same way as the data type
‘constant’ (Figure 3). Then, defining only the data type ‘dd’ enables elements to be
expanded into DD numbers naturally.
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Scalar a1 = 1 1×1

Vector a2 = [1;1] 2×1

Matrix a3 = [1,1;1,1] 2×2
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Figure 3 : Relationship between ‘constant’ and ‘dd’

3.2 Definition of operators for DD

On Scilab, we can make use of operator overloading for a new data type defined
by tlist. For computing values of a new data type, Scilab calls the preliminarily defined
function. Allowing operator overloading for computing a value of ‘dd’ using (DD1)～
(DD4), we can use the same operator for quadruple precision arithmetic as double pre-
cision arithmetic. In particular, we only redefine functions named ‘%<first operand
type> <op code> <secondoperandtype>’ or ‘ %<operandtype> <op code>’. We
need to write the sequence of characters associated with each data type to ‘<first
operand type>’ and ‘<second operandtype>’. Similarly, we should write a single
character associated with each operator to ‘<op code>’.

For example, a single character ‘a’ can be assigned to the operator ‘+’. For comput-
ing the sum of DD numbersA andB using the operator ‘+’, we only define the function
named %dda dd. In the same way, computing the sum of a DD numberA and a dou-
ble precision numberb using the operator ‘+’, we define the function named %dda s,
where ‘s’ is the character associated with the data type constant. For computation of
mixed precision arithmetic with ‘dd’ and ‘constant’, the value of ‘constant’ is expanded
to ‘dd’ in the computation.

3.3 Definition of a function for DD

If a Scilab function is applied to an argument whose data type is ‘dd’ , then an error
occurs. Hence, we define new functions named ‘dd<function name>’ for calling with
the type dd. For example, we create a new function ‘ddsqrt’ to be applied to a variable
of type ‘dd’, corresponding to the Scilab function ‘sqrt’ to compute a square root.

3.4 Characteristics of QuPAT

In QuPAT(Quadruple Precision Arithmetic Toolbox), the data types ‘dd‘ and ‘con-
stant’ are defined separately. Thus we can use both double precision arithmetic and
quadruple precision arithmetic in the same code. In addition, we can apply mixed pre-
cision arithmetic using the same operator (+,−, ∗, /) with QuPAT. To convert a value of



type ‘constant’ into one of type ‘dd’, we assign 0 to the lower part of dd. In contrast,
to convert a value of ‘dd’ into ‘constant’, we extract the higher part of dd. As a result,
users of Scilab can use quadruple precision arithmetic with QuPAT in the same way as
ordinary Scilab double precision arithmetic. Figure 4 shows the relationship between
types ‘constant’ and ‘dd’ in Scilab. QuPAT is implemented using pure Scilab functions,
hence QuPAT is independent of hardware and operating systems.
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Figure 4 : Relationship between Scilab and QuPAT

3.5 Computational time for DD arithmetic

Computation was carried out on a PC with an AMD Turion(tm) X2 Dual-Core
2.00GHz and Scilab version 5.1.1. Table 2 shows the computation time in seconds and
the ratio of time required for DD arithmetic to time required for double precision arith-
metic. Each result is the average over five trials, and N is the number of repetitions in
the loop.

Computation time for DD arithmetic is about 9 to 15 times greater than that for
double precision arithmetic.

4 Effectiveness of DD arithmetic for analyzing the GCR(m)
method

The GCR (Generalized Conjugate Residual) method is one of the the Krylov subspace
methods to solve a nonsymmetric linear systemAx = b. The GCR method is based on
Arnoldi process and the minimal residual approach. In addition, the GCR method has
the theoretical property that the residual norm decreases at each iteration and converges



Table 2 : Computation time in seconds; the ratio is in parentheses

computation time and ratio
N addition subtraction multiplication division

double

50,000 1.02 1.21 1.13 1.28
100,000 2.08 1.92 1.98 1.95
500,000 9.86 9.78 10.72 9.88

1,000,000 19.24 20.11 19.69 19.25

DD

50,000 9.80 (9.62) 10.72 (8.87) 13.25 (11.74) 13.41 (10.49)
100,000 19.91 (9.58) 21.12 (10.97) 28.00 (14.11) 29.00 (14.85)
500,000 104.77 (10.63) 108.42 (11.08) 137.38 (12.82) 141.06 (14.28)

1,000,000 207.74 (10.80) 218.23 (10.85) 278.83 (14.16) 280.11 (14.55)

after at mostn iterations, wheren is the dimension of the matrixA. But using floating
point arithmetic, it is known that stagnation of the residual norm may occur and that the
numerical solution may not converge.

In this section, we investigate numerical solution by the GCR(m) method wherem
is the restart cycle, comparing the results of using double precision arithmetic versus
DD arithmetic. The difference in the code between double precision arithmetic and DD
arithmetic is only in the definition of the variables and the name of the functions to
compute a norm and an inner product. All experiments were carried out in the same
computational environment as in Section 3.5.

We consider ‘arc30’ for the matrixA from the MatrixMarket [7]. The dimension of
this matrix isn = 130, and its condition number is 6.05×1010, obtained using the Scilab
function ‘cond’. We set the restart cycle atm = 50, and GCR(m) in double and DD
arithmetic was terminated at 1000 iterations if convergence did not occur. The iteration
was started withx0 = 0 and the right-hand side vectorb was given by substituting the
solution vectorx∗ = (1,1, ..., 1)T into b = Ax∗. The stopping criteria are given below:

‖rk‖2 ≤ 10−12 ‖r0‖2 (for double)

‖rk‖2 ≤ 10−18 ‖r0‖2 (for DD)

Table 3 and Figure 5 show the numerical results. In the case of double precision
arithmetic, the relative residual norm stagnated at about 1.0 × 10−10 and the solution
did not converge. In addtion, the error norm was 9.27× 100 at 1000 iterations. Because
n = 130, the residual norm should theoretically converge after 130 iterations. On the
other hand, using DD arithmetic that has about twice the number of significant digits,
the relative residual norm became 9.89× 10−19 and the error norm became 2.74× 10−8

in 18 iterations. This is a great improvement.

Table 3 : Iteration counts, relative residualnorm and relative error norm.

Iteration counts ‖r‖2/‖r0‖2 ‖x − x∗‖∞/‖x∗‖∞
double 1000 6.28e-11 9.27e+00

DD 18 9.89e-19 2.74e-08



1.00E-20

1.00E-18

1.00E-16

1.00E-14

1.00E-12

1.00E-10

1.00E-08

1.00E-06

1.00E-04

1.00E-02

1.00E+00

0 10 20 30 40 50

double

DD

Iteration counts

R
e
la
ti
v
e
 r
e
s
id
u
a
l

Figure 5 : Convergence history

It is clear that the reason for the differences is computational error. The error norm
did not decrease using double precision arithmetic. Because a double precision floating
point number has about 16 (decimal) significant digits, it is difficult to obtain a solu-
tion with sufficient accuracy for a system whose condition number is 6.05× 1010. In
addition, the residual norm stagnates due to computational error when using double
precision arithmetic. However, there are situations where the theory-based result for re-
ducing computational error using DD arithmetic does hold. We also intend to analyze
the implementation of these iterative algorithms using QuPAT.

5 Conclusion

To examine certain computational results of double precision arithmetic, we need a
higher precision arithmetic environment. For example, in Section 4, in solving a system
of linear equations by the GCR(m) method, the relative residual norm may stagnate
and may not converge in double precision arithmetic; i.e., it is not possible to obtain
the solution with sufficient accuracy. As a useful way to employ quadruple precision
arithmetic, Double-Double(DD) is proposed. However, in programming languages such
as C, we cannot set up quadruple precision arithmetic easily.

In this paper, we constructed a convenient quadruple precision arithmetic environ-
ment QuPAT(Quadruple Precision Arithmetic Toolbox) using Scilab as a toolbox. As a
consequence, we were able to use quadruple precision arithmetic without rewriting the
code in Scilab, and also utilize mixed precision arithmetic.

As in section 3.1, we defined a new data type ‘dd’ for quadruple precision numbers
using the Scilab function ‘tlist’. In QuPAT, a new data type ‘dd’ and the existing data
type ‘constant’ were defined separately. Thus it became possible to utilize both double
and quadruple precision arithmetic in the same code.

In addition, we applied operator overloading to the type ‘dd’ for the four fundamen-
tal rules of DD arithmetic. Thus it became possible to use all of the double, quadruple
and mixed precision arithmetic with the same operators (+,−, ∗, /). The Scilab environ-
ment was naturally extended to use DD arithmetic with QuPAT. The computation time
for DD arithmetic was about 9 to 15 times that for double precision arithmetic.



QuPAT was implemented using pure Scilab functions. Therefore, if Scilab is avail-
able, we can utilize QuPAT independently of underlying hardware and operating sys-
tems. QuPAT is downloadable provisionally from the web [9].

Until now, some other important functions, such as sine or cosine were not imple-
mented. In addition, if we use Scilab capability link to functions written in C or Fortran,
QuPAT will execute faster. However, if we do use this capability, the code will depends
on the computing environments and programming languages. These points will be dis-
cussed in future work.
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