
Effectiveness of sparse data structure for double-double
and quad-double arithmetics

Tsubasa Saito1, Satoko Kikkawa1, Emiko Ishiwata2, and Hidehiko Hasegawa3

1 Graduate School of Science, Tokyo University of Science, Japan
2 Tokyo University of Science, Japan

3 University of Tsukuba, Japan

Abstract. Double-double and quad-double arithmetics are effective tools to re-
duce the round-off errors in floating-point arithmetic. However, the dense data
structure for high-precision numbers in MuPAT/Scilab requires large amounts of
memory and a great deal of the computation time. We implemented sparse data
typesddsp andqdsp for double-double and quad-double numbers. We showed
that sparse data structure for high-precision arithmetic is practically useful for
solving a system of ill-conditioned linear equation to improve the convergence
and obtain the accurate result in smaller computation time.

Keywords:ill-conditioned matrix problem, sparse matrix, multiple precisions

1 Introduction

In floating-point arithmetic, we cannot avoid the computation errors. Therefore, for ex-
ample, it is known that the iterative method for solving a system of ill-conditioned linear
equation may not converge when double-precision arithmetic is used. Double-double
and quad-double arithmetics facilitate the use of high-precision arithmetic on ordinary
double-precision arithmetic environment. We have developed MuPAT[1, 2], which is
‘Multiple Precision Arithmetic Toolbox’on Scilab[3], and have shown the effectiveness
of double-double and quad-double arithmetics for ill-conditioned problems[4]. MuPAT
has only dense data structures. Because of the large amount of memory and much more
computation time, double-double and quad-double arithmetics cannot be applied for
large matrices.

We developed sparse data structures for quadruple and octuple-precision arithmetics
as a part of MuPAT. This implementation enables the users to treat large matrices with
lower memory consumption and small computation time. We defined new data types
for a sparse matrix which have double-double and quad-double numbers, and made it
possible to use a combination of double, double-double, and quad-double arithmetics
for both dense and sparse data structures.

We compared the memory consumption and the computation time of the matrix
computations with sparse and dense data structures for double-double and quad-double
arithmetics. We also showed that high-precision sparse data structure is practically use-
ful for ill-conditioned matrices by applying double, double-double and quad-double
arithmetics for the Biconjugate Gradient (BiCG) method.

2 Double-double and quad-double

Double-double and quad-double arithmetics were proposed for quasi-quadruple-precision
and quasi-octuple-precision arithmetics by Hida et al.[5]. A double-double number is
represented by two, and a quad-double number is represented by four, double-precision
numbers. A double-double numberx(dd) and a quad-double numbery(qd) are represented
by an unevaluated sum of double-precision numbersx0, x1, y0, y1, y2, y3 as follows:

x(dd) = x0 + x1, y(qd) = y0 + y1 + y2 + y3,

wherex0, x1, y0, y1, y2, y3 satisfy the following inequalities:

|x1 | ≤
1
2

ulp(x0), |yi+1 | ≤
1
2

ulp(yi), i = 0,1,2,

where ulp stands for ‘units in the last place’. A double-double(quad-double) number has
31(63) significant decimal digits. They can be computed by using only double-precision
arithmetic operations (see [5, 6] for details).

In Scilab, double-precision numbers are defined by the data type namedconstant.
Scalars, vectors and matrices are treated in the same way asconstant. In MuPAT,
double-double and quad-double numbers are defined as data types nameddd andqd,
consisting of two or fourconstant data. We can useconstant, dd andqd types at the
same time, with the same operators (+,−, ∗, /) and the same functions such asabs, sin
andnorm.

3 Sparse data structure for MuPAT

MuPAT has only the dense data structures of the three data typesconstant, dd, and
qd. Sparse data structure is important to reduce the memory consumption and the com-
putation time. Especially using double-double and quad-double arithmetics, sparse data
structures are more important because they require twice or four times memories com-
pared with double-precision arithmetic, and also require much more computation time.
We developed the sparse data structures for double-double and quad-double arithmetics
with considering the following points;

· The same arithmetic operators (+,−, ∗) can be used among these data types.
· Operations for sparse and dense data in different precision numbers are available at

the same time.

The users can compare problems in different precisions with lower memory consump-
tion and small computation time.

3.1 Sparse data structure for double precision number

Sparse data structure stores non-zero entries with its row and column indices. In Scilab,
the following matrix

a =


0 0 9 0
0 0 7 1
1 0 0 0
0 0 0 8



can be represented by a sparse data typesparse as follows.

a =

(4, 4) sparse matrix

(1, 3) 9.

(2, 3) 7.

(2, 4) 1.

(3, 1) 1.

(4, 4) 8.

The first line (4, 4) means the size of the matrix. The row and column indices and
values of the matrix are stored after line 2. The entries are stored row-by-row. The
same arithmetic operators (+,−, ∗) for constant can be used forsparse, and mixed
operations betweenconstant andsparse are also allowed. The results of these binary
operations becomeconstant or sparse depending on the operations.

3.2 Sparse data structures for double-double and quad-double numbers

To treat high-precision arithmetic for sparse data structure, we defined two new sparse
data types; one isddsp for double-double numbers, and the other isqdsp for quad-
double numbers. These data types are based on CCS (Compressed Column Storage)
format, which contains some vectors; row index, column pointer and values.ddsp has
two andqdsp has four value vectors to represent a double-double number and a quad-
double number respectively. By these definitions of data types, MuPAT has six data
types:constant, dd, qd for dense data andsparse, ddsp, qdsp for sparse data of
double, double-double and quad-double numbers respectively.

3.3 Definition of matrix operators

Now we have three sparse data typessparse, ddsp, andqdsp. To enable the use of the
same matrix operators (+,−, ∗) for these data types, operator overloading was applied
to perform arithmetic operations among every existing data typesconstant, dd, and
qd, and sparse data typessparse, ddsp, andqdsp.

In many cases, the sparsity cannot be kept after sparse matrix operations. Especially
for sparse matrix multiplication, the result tends to have many non-zero entries and
become a dense matrix. Therefore, we should allocate memory space dynamically.

3.4 Functions for sparse matrix

Some functions forsparse are extended toddsp andqdsp. For example,full for
changing a sparse data type into a dense data type, andnnz for returning the number of
non-zero entries, and so on can be used in the same syntax amongsparse, ddsp, and
qdsp. A’ for transposition ofA and insertion and extraction of matrix elements can be
performed in the same syntax for all data types.

4 The memory consumption and the computation time

To confirm the effectiveness of a sparse matrix computation with usingddsp andqdsp,
we compared the memory consumption and the computation time between sparse and
dense data structures. All experiments were carried out on Intel Core i5 1.7GHz, 4GB
memory and Scilab version 5.3.3 running on Mac OS X Lion.

4.1 Memory consumption

We prepared some 1000× 1000 random sparse matrices with different sparsity for
constant, dd, qd, sparse, ddsp, andqdsp. The sparsity patterns are random. Ta-
ble 1 shows the sparsity and the memory consumption of each matrix. If the sparsity
is less than 66% for double-double number or 80% for quad-double number, the mem-
ory consumptions of the sparse data structures are smaller than that of the dense data
structures.

Table 1 : Memory consumption

Matrix Memory (MB)
Sparsityconstant sparse dd ddsp qd qdsp

A 1% 8.00 0.12 16.00 0.25 32.00 0.41
B 5% 8.00 0.60 16.00 1.21 32.00 2.01
C 10% 8.00 1.21 16.00 2.41 32.00 4.01
D 66% 8.00 7.92 16.00 15.85 32.00 26.40
E 80% 8.00 9.60 16.00 19.21 32.00 32.01

4.2 Matrix operations

Using the matrices in Table 1, we measured the following matrix operations.

· Matrix vector productAx, Bx, Cx
· Matrix addition A+ B, B+C, C + A
· Matrix multiplication AB, BC, CA

We executed each operation repeatedly 100 times. Table 2 and Table 3 show the results.

Matrix vector product The computation time of matrix vector product forddsp is
141.5 times smaller than that ofdd when the sparsity of the matrix is 1% and 13.0
times faster when the sparsity is 10%. The computation time forqdsp is 134.6 times
smaller than that ofqd when the sparsity is 1% and 14.0 times faster when the sparsity
is 10%.

Matrix addition The computation time of matrix addition forddsp is 10.0 times and
3.7 times smaller than that ofdd when the sparsity is 6% and 15% respectively. The
computation time forqdsp is 13.7 times and 5.5 times smaller than that ofqd when
the sparsity is 6% and 15% respectively. When the sparsity of the result is more than
66% for double-double number or 80% for quad-double number, the memory usage of
sparse data typesddsp andqdsp are larger than that of dense data typesdd andqd.

Table 2 : Results of matrix operations (Memory)

Sparsity Memory (MB)
ddsp qdsp

Ax - - -
Bx - - -
Cx - - -

A+ B 6% 1.43 2.39
C + A 11% 2.63 4.39
B+C 15% 3.49 5.82

AB 40% 9.51 15.98
CA 63% 15.17 25.17
BC 99% 23.86 39.73

Table 3 : Results of matrix operations (Time)

Time (sec.)
dd ddsp dd/ddsp qd qdsp qd/qdsp

Ax 4.10 0.03 141.5 20.73 0.15 134.6
Bx 4.13 0.14 30.2 20.76 0.74 28.0
Cx 4.10 0.32 13.0 20.81 1.49 14.0

A+ B 6.36 0.64 10.0 15.97 1.16 13.7
C + A 6.40 1.25 5.1 15.66 2.14 7.3
B+C 6.35 1.69 3.7 15.85 2.90 5.5

AB 2245.59 5.21 430.9 14909.50 12.27 1214.7
CA 2288.42 8.10 282.6 14964.51 20.84 718.1
BC 2282.17 16.54 138.0 14954.12 71.61 208.8

Matrix multiplication The sparsity may be increased in matrix multiplication. In case
of quad-double arithmetic, the computation result ofBC by using a dense data type
qd requires 32MB memory. On the other hand, the result by using a sparse data type
qdsp requires 40MB memory. However, the computation times usingqd andqdsp are
14954.1 seconds and 71.6 seconds respectively. The computation time forqdsp is 208.8
times smaller than that ofqd. In case ofAB, ABkeeps low sparsity, and the computation
time of ddsp is 430.9 times andqdsp is 1214.7 times smaller than that ofdd andqd
respectively.

5 Using high-precision arithmetic with sparse data structure for
ill-conditioned problems

We show the effectiveness of sparse data structure for high-precision arithmetic on
Scilab by applying the Biconjugate Gradient (BiCG) method for ill-conditioned ma-
trices. Theoretically, the BiCG method, which is one of the Krylov subspace method,
converges after at mostn iterations, wheren is the dimension of the matrix[7]. How-
ever, in floating-point arithmetic, the norm of the residual may diverge and oscillates,
and then the iteration process may not converge. Sometimes it may require more thann
iterations.

The iteration was started withx0 = 0 and the right-hand side vectorb was given
by substituting the solutionx∗ = (1,1, ..., 1)⊤ into b = Ax∗. Stopping criterion was
∥rk∥2 ≤ 10−12 ∥r0∥2. The initial shadow residual wasr∗0 = r0. Iteration process was
terminated at 104 iterations if it did not converge.

We took up four ill-conditioned test sparse matrices from [8]. These matrices are
constructed double-precision numbers, then lower components of double-double and
quad-double numbers are filled with zero. Condition numbers were obtained using the
Scilab functioncond in double-precision. Table 4 shows the list of test matrices.

Table 4 : Properties of test matrices

Matrix Dimension Non-zero Sparsity Condition number
west0497 497 1,721 0.70% 4.62× 1011

gre 1107 1,107 5,664 0.46% 3.19× 107

tols2000 2,000 5,184 0.13% 5.99× 106

sherman3 5,005 20,033 0.08% 3.49× 1018

Table 5 shows the results for double (D), double-double(DD), and quad-double
(QD). ‘Iterations’ denotes the number of iterations required for convergence, ‘Resid-
ual’ denotes the relative residual norm∥r∥2/∥r0∥2 and ‘Error’ denotes the relative er-
ror norm∥x − x∗∥∞/∥x∗∥∞. constant/sparse is abbreviated to ‘c/s’. The values of
‘Residual’and ‘Error’were obtained by using sparse data structures.

Using double-precision arithmetic, the BiCG method did not converge for all matri-
ces. Especially, for west0497 and gre1107, the BiCG method converged by only using
quad-double arithmetic. For sherman3, even if the BiCG method converged by using
double-double arithmetic, the number of iteration became more thann. Using quad-
double arithmetic, the convergence improved, and the number of iteration decreased
and became less thann. High-precision arithmetic produces great improvement and
enables us to obtain the accurate result that cannot be obtained by double-precision
arithmetic.

However, using dense data typesdd andqd, iteration process requires a great deal
of the computation time. Sparse data typesddsp andqdsp can save the computation
time. For sherman3, the computation time ofddsp is 680 times smaller than that ofdd.
Thus, high-precision sparse data structure provides more accurate results with practi-
cable computation time . In case of dense data structure, sherman3 could not be stored
by a quad-double number because of Out of Memory error. High-precision sparse data
structure is also important in terms of the memory consumption.

An improvement of the accuracy by high-precision arithmetic depends on the prob-
lems and the methods. Although double-double and quad-double arithmetics do not
perform well for all problems, high-precision sparse data structures surely increase the
number of problems which can be solved accurately.

Table 5 : Computation results

D

Matrix
Time (sec.)

Iterations Residual Error constant sparse c/s

west0497 † 1.02e+02 3.70e+05 39.1 2.8 13.8
gre 1107 † 6.97e+03 1.69e+04 278.7 4.1 68.7
tols2000 † 8.06e+02 2.34e+06 998.6 4.7 211.7
sherman3 † 1.73e-03 6.24e-01 6749.1 11.7 577.6

DD

Matrix
Time (sec.)

Iterations Residual Error dd ddsp dd/ddsp

west0497 † 2.18e-01 7.73e+02 303.7 15.0 20.2
gre 1107 † 2.40e-01 9.08e-01 1828.9 21.2 86.2
tols2000 1586 9.29e-13 3.55e-09 938.3 4.1 228.7
sherman3 7696 9.98e-13 1.05e-13 31227.4 45.8 681.9

QD

Matrix
Time (sec.)

Iterations Residual Error qd qdsp qd/qdsp

west0497 2676 6.09e-13 3.50e-08 306.6 7.0 43.84
gre 1107 3401 8.59e-13 3.05e-11 2136.2 17.6 121.3
tols2000 1080 6.77e-13 1.96e-09 2342.8 7.1 328.5
sherman3 4884 9.35e-13 1.73e-13 − 91.1

† : More than 104 iterations,− : Out of Memory

6 Conclusion

We developed the sparse data structures for quadruple-precision and octuple-precision
arithmetics in MuPAT/Scilab, and showed that high-precision sparse data structure is
practicable for solving a system of ill-conditioned linear equation.

MuPAT covers all arithmetic operators for double, double-double, and quad-double
numbers for both dense and sparse data structures. Using MuPAT, six data types are
available at the same time and operations for mixed-precision and mixed data structure
are also available by the same operators and functions. To use double-double and quad-
double arithmetics with lower memory consumption and smaller computation time,
only a modification to definition of numbers is needed.

The memory consumption of the sparse data types is smaller for a matrix whose
sparsity is less than 66% for double-double number or 80% for quad-double number.
In matrix vector product, the computation time of sparse data structures for a double-
double number and a quad-double number are 141.5 times and 134.6 times smaller
than that of dense data structures respectively, when the sparsity of the matrix is 1%.
In matrix addition, the computation time of sparse data structure for a double-double
number and a quad-double number are 10.0 times and 13.7 times smaller than that
of dense data structures respectively, when the sparsity of the result is 6%. In matrix
multiplication, even if the result becomes a dense matrix whose sparsity is more than
99% and need much memory, the computation time can be reduced.

We investigated the convergency of the BiCG method for ill-conditioned matrices.
Double-double and quad-double arithmetics are crucial to improvement of the accu-
racy. However, dense data structures for double-double and quad-double numbers and

arithmetics require large amounts of memory and considerably long computation time.
For some situations, a matrix cannot be stored by a quad-double number because it re-
quires four times as large memory as a double-precision number. High-precision sparse
data structure facilitates the pragmatic problems of these restriction. Using sparse data
structure, the computation time became 20∼ 680 times smaller than using dense data
structure. Sparse data structure for double-double and quad-double arithmetics is prac-
ticable way to improve the convergence for ill-conditioned matrices, and to increase the
number of problems that can be solved.

References

[1] MuPAT, http://www.mi.kagu.tus.ac.jp/qupat.html
[2] S. Kikkawa, T. Saito, E. Ishiwata and H. Hasegawa, Development and acceleration of multiple

precision arithmetic toolbox MuPAT for Scilab, JSIAM Letters, Vol. 5, 9-12(2013).
[3] Scilab, http://www.scilab.org/
[4] T. Saito, E. Ishiwata and H. Hasegawa, Analysis of the GCR method with mixed precision

arithmetic using QuPAT, J. Comput. Sci., Vol. 3, 87-91(2012).
[5] Y. Hida, X. S. Li and D. H. Bailey, Quad-double arithmetic: Algorithms, Implementation,

and application. Technical Report LBNL-46996, Lawrence Berkeley National Laboratory,
Berkeley, CA 94720 (2000).

[6] T. J. Dekker, A Floating-Point Technique for Extending the Available Precision, Numer. Math.
Vol. 18, 224-242(1971) .

[7] R. Barrett et al., Templates for the Solution of Linear Systems: Building Blocks for Iterative
Methods, 2nd Edition, SIAM, Philadelphia (1994).

[8] The University of Florida Sparse Matrix Collection,
http://www.cise.ufl.edu/research/sparse/matrices/

