
Utilizing the quadruple-precision floating-point
arithmetic operation for the Krylov Subspace Methods

Hidehiko Hasegawa
∗

Abract. Some large linear systems are difficult to solve by the Krylov subspace methods. The
reason is that they include mathematically not good conditions for such iterative methods. If more
accurate calculation is achieved on computers then such problems can be solved easily. However,
in general, multiple precision arithmetic operations to achieve more accurate calculation are very
costly on many computing environments, and more memory space and much computation time are
required. We show the quadruple-precision floating-point arithmetic operation is cost-effective for
some class of problems on new high-performance computers. This method will be able to get good
performance without any difficulties to parallelize and vectorize some preconditioners.

1 Introduction

The Krylov subspace methods, include Conjugate Gradient (CG) method[6], BiConjugate
Gradient (BiCG) method[3], and other methods[2], are widely used for solving the large
linear systems. These methods are consist of a combination of matrix-vector operations:
Ax, ATx, K−1r, K−Tr, an inner product: xTx, and other vector operations[1] where A is
the coefficient matrix and K is a preconditioner. As one of effective preconditioners K, an
incomplete LU factorization of A [7] [8] is used, however it includes a serial processing part
which is not suitable for the parallel and vector processing[1]. For many class of problems, the
Krylov subspace methods show good convergence, however for some class of problems they
may stagnate or not converge[1]. The following facts about the Krylov subspace methods
for linear systems are known:

* The convergence is improved by more accurate computation[4].

* As a mathematically good preconditioner, such as an incomplete factorization, includes
a serial processing part, it is difficult to get good performance on vector and parallel
computers[1].

In general, multiple precision floating-point arithmetic operations are believed to be
costly. However if the quadruple-precision floating-point arithmetic operation, one of the
multiple precision arithmetic operations, has reasonable computation cost and good con-
vergence, we have a possibility to get a cost-effective solver based on the Krylov subspace
methods. We think about followings:

∗School of Library, Information and Media Studies, University of Tsukuba, Tsukuba 305-8550, Japan
(hasegawa@slis.tsukuba.ac.jp)



* The quadruple-precision floating-point arithmetic operation should have better conver-
gence than the double-precision floating-point arithmetic operation with an incomplete
LU factorization (ILU) preconditioner, however the computation cost may be expen-
sive.

* If there is no preconditioner, it is easy to parallelize and vectorize the Krylov subspace
methods.

In this paper, we examine the convergence and the computation time of the double-precision
floating-point arithmetic operation with the ILU(0) preconditioner, and the quadruple-
precision floating-point arithmetic operation without any preconditioners on some computing
environments.

2 Numerical Comparison

The purpose of this paper is to compare the quadruple-precision floating-point arithmetic
operation and the double-precision floating-point arithmetic operation. However the conver-
gence property and its performance strongly depend on the problem to be solved. Mathe-
matical property of the problem affects to its convergence, and the structure of the problem
such as a sparsity affects to its performance. We solve the system by BiCG method [1] which
includes all of basic matrix and vector operations of the Krylov subspace methods, Ax, ATx,
K−1r, K−Tr, xTx, and etc.

2.1 Model Problem

We use a Toeplitz matrix A of order N = 200 with a parameter γ in this paper. It is known
that the system is difficult to solve by the Krylov subspace methods when the parameter
is large[5]. The important thing is that a difference occurs whether or not between at the
quadruple-precision and at the double-precision floating-point arithmetic operations.

A :=




2 1
0 2 1
γ 0 2 1

γ 0 2
. . .

. . .
. . .

. . .




• Conditions

– Parameter: γ = 1.3, 1.7, 2.1 and 2.5.

– Right-hand side vector: b = (1, 1, . . . , 1)T, and starting vector: x0 = 0.

– The stopping criterion: ε = 10−12, and the maximum iteration: 2000 steps.



2.2 Convergence

We examine the convergence under the following conditions (1–3) on a workstation Sun
Enterprize 3000.

1. Double-precision floating-point arithmetic operation without preconditioner.

2. Double-precision floating-point arithmetic operation with ILU(0) preconditioner.

3. Quadruple-precision floating-point arithmetic operation without preconditioner (auto-
quadruple option is used without any tunings).

Table 1: The iteration counts, computation time and true residual norm on a workstation
Sun Enterprize 3000.

γ = 1.3 γ = 1.7 γ = 2.1 γ = 2.5
Iter. 188

1. Double Time 1.7 × 10−1 No No No
True residual 3.1 × 10−13

Iter. 40 75 148 179
2. Double + ILU(0) Time 6.8 × 10−2 8.5 × 10−2 1.1 × 10−2 1.4 × 10−2

True residual 1.7 × 10−13 5.6 × 10−13 8.3 × 10−10 5.2 × 10−2

Iter. 122 152 255 446
3. Quadruple Time 2.0 × 102 5.3 × 102 5.5 × 103 1.9 × 105

True residual 6.6 × 10−13 6.4 × 10−13 3.6 × 10−13 5.4 × 10−13

This comparison is shown as a table 1. We have got following results:

* The residual norm doesn’t converge on the double-precision floating-point arithmetic
operation without preconditioner for the parameters γ = 1.7, 2.1 and 2.5.

* We can’t get the approximate solution on the double-precision floating-point arithmetic
operation with the ILU(0) preconditioner for the parameters γ = 2.1 and 2.5.

* We can get the solution only when the quadruple-precision floating-point arithmetic
operation is used.

* A lot of computation time is required for the quadruple-precision floating-point arith-
metic operation on Sun Enterprize 3000.

2.3 Computation time

The computation time per iteration depends on the hardware, and weights of each basic
operation depend on the machine type. For example, as a preconditioner ILU(0) is not vec-
torized on the vector computer, its computation time is longer than other basic operations,



and its weight is much higher. We investigate the computation time under the following
conditions (1–2) on the five computing environments. Here, the order of Toeplitz matrix
is 10000. In below tables, “ratio” means the quotient of the computation time per itera-
tion at the quadruple-precision floating-point arithmetic operation without preconditioner
by it at the double-precision floating-point arithmetic operation with the ILU(0) precondi-
tioner. MATVEC, MATVECT, PSOLVE, and PSOLVET mean Ax, ATx, K−1r, and K−Tr
respectively. DAXPY, DDOT and DNORM2 mean xTx and other main vector operations.

1. Double-precision floating-point arithmetic operation with ILU(0) preconditioner.

2. Quadruple-precision floating-point arithmetic operation without preconditioner(Auto-
quadruple option is used without any tunings).

Table 2: Results on a workstation: Sun Enterprize 3000.

Double + ILU(0) Quadruple ratio

MATVEC
4.69 × 10−3sec. 0.149sec.

31.7(17.5%) (24.7%)

MATVECT
4.89 × 10−3sec. 0.159sec.

32.5(18.2%) (26.4%)
DAXPY, DDOT 7.47 × 10−3sec. 0.290sec.

38.8DNORM2 (27.8%) (48.1%)

PSOLVE
4.87 × 10−3sec.

—– —–(18.1%)

PSOLVET
4.92 × 10−3sec.

—– —–(18.3%)

Total 2.68 × 10−2sec. 0.602sec. 22.4

Table 3: Results on a vector computer: Fujitsu VPP800.

Double + ILU(0) Quadruple ratio

MATVEC
3.92 × 10−5sec. 1.20 × 10−3sec.

30.6(1.06%) (9.52%)

MATVECT
3.93 × 10−5sec. 1.20 × 10−3sec.

30.5(1.07%) (9.52%)
DAXPY, DDOT 1.21 × 10−3sec. 1.01 × 10−2sec.

8.3DNORM2 (32.9%) (80.1%)

PSOLVE
1.35 × 10−3sec.

—– —–(36.7%)

PSOLVET
1.03 × 10−3sec.

—– —–(28.0%)

Total 3.67 × 10−3sec. 1.26 × 10−2sec. 3.4



Table 4: Results on a SMP: Hitachi SR8000.

Double + ILU(0) Quadruple ratio

MATVEC
1.01 × 10−4sec. 6.12 × 10−4sec.

6.0(3.5%) (11.3%)

MATVECT
9.96 × 10−5sec. 6.01 × 10−4sec.

6.0(3.4%) (11.1%)
DAXPY, DDOT 7.81 × 10−4sec. 4.19 × 10−3sec.

5.3DNORM2 (27.2%) (77.5%)

PSOLVE
7.38 × 10−4sec.

—– —–(25.7%)

PSOLVET
1.15 × 10−3sec.

—– —–(40.9%)

Total 2.87 × 10−3sec. 5.40 × 10−3sec. 1.8

Table 5: Results on a mainframe: Hitachi MP5000.

Double + ILU(0) Quadruple ratio

MATVEC
1.35 × 10−3sec. 4.68 × 10−3sec.

3.4(16.9%) (27.3%)

MATVECT
1.34 × 10−3sec. 4.72 × 10−3sec.

3.5(16.8%) (27.6%)
DAXPY, DDOT 2.44 × 10−3sec. 7.19 × 10−3sec.

2.9DNORM2 (30.6%) (42.0%)

PSOLVE
1.46 × 10−3sec.

—– —–(18.3%)

PSOLVET
1.35 × 10−3sec.

—– —–(16.9%)

Total 7.96 × 10−3sec. 1.71 × 10−2sec. 2.1



Next, we examine the speed-up of the quadruple-precision floating-point arithmetic oper-
ation without a ILU(0) preconditioner. We display the results on a vector parallel computer
Fujitsu VPP700 without using its vector facility as a parallel computer.

Table 6: Speed-up on the quadruple-precision: Fujitsu VPP700 (N = 10000).

1PE 2PE 4PE 8PE

MATVEC
317.4 sec. 158.4sec. 79.3sec. 39.8sec.

(1.0) (2.0) (4.0) (7.9)

MATVECT
268.6 sec. 136.1sec. 68.3sec. 33.9sec.

(1.0) (1.9) (3.9) (7.9)
DAXPY, DDOT 839.4 sec. 416.9sec. 211.4sec. 109.1sec.

DNORM2 (1.0) (2.0) (3.9) (7.6)

Total
1425.4 sec. 711.4 sec. 359 sec. 182.8 sec.

(1.0) (2.0) (3.9) (7.8)

From table 2–6 we have got following results:

* On the ordinary workstation Sun Enterprize 3000, the quadruple-precision floating-
point arithmetic operation is almost thirty times slower than the double-precision
floating-point operation, however on the classic mainframe Hitachi MP5000 its ratio is
four.

* On the vector computer Fujitsu VPP800, as its vector processing facility works well
for the double-precision floating-point arithmetic operation, the ratio of Matrix-vector
operation is thirty, and the ratio of other vector operations is eight, but the ILU(0)
preconditioning is very costly operation on this machine.

* On the SMP Hitachi SR8000, the quadruple-precision floating-point operations for all
type of basic operations is only six time slower than the double-precision floating-point
arithmetic operation, and the ILU(0) preconditioning is also costly operation.

* The ratio per iteration between the double-precision floating-point arithmetic operation
with the ILU(0) preconditioner and the quadruple-precision floating-point arithmetic
operation without any preconditioners is about twice on the SMP Hitachi SR8000 and
the mainframe Hitachi MP5800, and is about three times on a new vector computer
Fujitsu VPP800.

* The speed-up of the quadruple-precision floating-point arithmetic operation without
any preconditioners on Fujitsu VPP700 is ideal.

On the Hitachi MP5000 and SR8000, if iteration count of the quadruple-precision floating-
point arithmetic operation without any preconditioners is half of the double-precision floating-
point arithmetic operation with the ILU(0) preconditioner, then the total computation time



becomes to be same. It is also possible to tune for both the quadruple-precision and the
double-precision floating-point arithmetic operation. We can state almost same conclusion
for the result on the Fujitsu VPP800. On the simple parallel (without using vector facil-
ity) computer Fujitsu VPP700, the quadruple-precision floating-point arithmetic operation
without any preconditioners can be forced an ideal speed-up. This is the greatest and the
simplest result, because the parallelization of a mathematically powerful preconditioner is
very difficult problem but more accurate calculation may work well instead of the precondi-
tioner.

In addition, for the quadruple-precision floating-point arithmetic operation, the size of
memory is twice, and the computation time may be more than seven times. This fact fits
for the RISC based computers, especially for the parallel computers, because of a small size
of data to be transferred per computation. These results of the quadruple-precision floating-
point arithmetic operation is measured by only changing its Fortran compiler’s option with-
out any tunings, it is possible to reduce the computation time on the quadruple-precision
floating-point arithmetic operation by the following improvement:

* To use the quadruple-precision floating-point arithmetic operation together with a mild
(not so robust) preconditioner, which means parallelizable and vectorizable.

* To tune the code.

* There is a small weak point that the required memory of the quadruple-precision
floating-point arithmetic operation is twice of that of the double-precision floating-
point arithmetic operation. However many high-performance computers have enough
memory.

3 Conclusion

The quadruple-precision floating-point arithmetic operation is believed to be costly. But it
is not true when some large linear systems of equations are solved by the Krylov subspace
methods. On the new high-performance computers, the quadruple-precision floating-point
arithmetic operation may become to be cost-effective because its convergence is acceler-
ated by more accurate computation, and it is parallelized scalably without any difficul-
ties. Although, in this paper, we could not show that the total computation time at the
quadruple-precision floating-point arithmetic operation is really faster than that of at the
double-precision floating-point arithmetic operation with the ILU(0) preconditioner for solv-
ing a large linear system by the Krylov subspace methods. Also the problem tested in this
paper is not a practical problem.

We found that we can get the good convergence on the quadruple-precision floating-
point arithmetic operation, and the quadruple-precision floating-point arithmetic operation
can bring better results than the double-precision floating-point arithmetic operation for the
convergence. Also the computation time on the quadruple-precision floating-point arithmetic
operation is about twice on the double-precision floating-point arithmetic operation when
the vector facility or multiple CPUs are used. On the other hand, the preconditioner ILU(0)
is not useful for reducing the computation time on vector and parallel computers because



the preconditioning includes a serial processing part. We expect that the computation time
would be shorter when we employ the mild preconditioner, which can be vectorized and
parallelized.

We propose to utilize the quadruple-precision floating-point arithmetic operation with
some mild preconditioner to get good performance for some class of problems, they are
difficult to be solved by the double-precision floating-point arithmetic operation with the
ILU(0) preconditioner, on new high-performance computing environments.

Finally we believe that we should utilize the quadruple-precision floating-point arith-
metic operation on new high-performance computing environments, and its high-performance
should be used for the quality of computation.

References

[1] Barrett, R., Berry, M., Chan, T., Demmel, J., Donato, J., Dongarra, J.,

Eijkhout, V., Pozo, R., Romine, C., and van der Vorst, H., Templates for the
Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia,
1994.

[2] Bruaset, A. M., A Survey of Preconditioned Iterative Methods, Frontiers in Applied
Mathematics 17, Longman Scientific and Technical, London, 1995.

[3] Fletcher, R., Conjugate gradient methods for indefinite systems, in Numerical
Analysis Dundee 1975, ed. by Watson, G., Lecture Notes in Mathematics, 506(1976),
Springer-Verlag, pp.73-89.

[4] Greenbaum, A., Iterative Methods for solving Linear Systems, SIAM, Philadelphia,
1997.

[5] Gutknecht, M. H., Variants of BiCGSTAB for Matrix with Complex Spectrum,
SIAM J. Sci. Comput., 14 (1993), 1020-1033.

[6] Hestenes, M. R. and Stiefel, E., Methods of Conjugate Gradients for Solving
Linear Systems, J. Res. Nat. Bur. Standards, 49 (1952), 409-435.

[7] Meijerink, J. A. and van der Vorst, H. A., An Iterative Solution Method for
Linear Systems of which the Coefficient Matrix is a Symmetric M-matrix, Mathematics
of Computation, 31 (1977), 148-162.

[8] Saad, Y., Iterative Methods for Sparse Linear Systems, PWS, Boston, 1996.


