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Abstract 
There are many studies which try to analyze 'co-authorship networks' and to describe 
their patterns. However, most studies describe mainly static networks, and they do not 
take into account the statistical peculiarity of author productivity data, i.e., the sample 
size dependency of statistical measures. In this study, we turn our attention to the 
change of co-authorship networks according to increase in the sample size. We consider 
'the dynamic characteristics' of networks, and try to compare co-authorship networks of 
different domains. 
 
 
1. Introduction 

In recent years, academic researches have become more complex, and people 
regard research collaboration as more and more important. We may see it, for example, 
through the fact that in many fields (especially in natural sciences) both the number of 
coauthors and the ratio of coauthored papers are increasing (e.g., Devilliers, 1984; 
Drenth, 1988; O'Neill, 1988; Yitzhaki & Ben-Tamar, 1990). Thus, we can say that it is 
an important issue to arrange systems, such as grants-in-aid, for supporting research 
collaboration (e.g., intercollegiate collaboration and collaboration with industrial 
circles). For this issue, first of all, we have to grasp the present situation of research 
collaboration. 

The situation of research collaboration can be measured to some extent 
through analyzing the products of collaboration, i.e., coauthored papers. There are 
many studies which try to analyze 'co-authorship networks' and to describe their 

 



patterns1. For instance, some studies proposed indices for measuring the link strength 
between nodes (authors) and analyzed actual co-authorship networks using those 
indices (e.g., Narin et al., 1991; Arunachalam et al., 1994; Kretschmer & Gupta, 1998; 
Kundra & Kretschmer, 1999), and others applied statistical methods such as Factorial 
Correspondence Analysis (FCA) to the analysis of co-authorship networks (e.g., Elalami 
et al., 1992; Okubo et al., 1992). However, most studies describe mainly static networks, 
and they do not take into account the statistical peculiarity of author productivity data, 
i.e., the sample size dependency of statistical measures. In this study, we consider the 
change of co-authorship networks. We consider 'the dynamic characteristics' of networks, 
and try to compare co-authorship networks of different domains. 

This study analyzes the change in the mass and variety of each author's 
'ego-centered networks' (Wasserman & Faust, 1994) according to increase in the 
number of papers, as a start point of dealing with the growth of sociocentric networks of 
co-authorship. 
 
2. Selection of Measures 

In this study, we examine (i) the growth of the mass of relations in networks by 
observing the number of partners (links) of each author (node), and examine (ii) the 
change of the variety of relations in networks by observing inequality of relationship 
strength (link strength) with each partner. We use the number of partners (V) as an 
index for the first viewpoint, and used Gini's index (G) as an index for the second 
viewpoint. G is obtained by: 
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where V represents the number of partners, fi represents the frequency of a partner ai, 
and  represents the mean frequency. µ

Many indices for measuring inequality have been proposed. Among them, we 
selected G for the following two reasons. One reason is that G is insensitive to the 
number of partners (Yoshikane, 2000). This feature is desirable for our aim, because we 
wish to observe, as the 'variety' of relations in networks, pure inequality where the 
influence of the number of partners is removed. (We also observe the number of 
partners, V, as the 'mass' of relations.) The other reason is that G is sensitive to all 

                                                  
1 Social network analysis studies, including co-authorship network studies, are 
reviewed in Otte & Rousseau (2002). 

 



partners equally (Yoshikane, 2000). This feature is also desirable, because we wish to 
observe inequality on the whole, not to attach much importance to the relationship 
strength with particular partners (e.g., the most frequent partners). 
 
3. The Data and Target of Analysis 

This study analyzes not 'diachronic' but 'synchronic' dynamics. The reason why 
we deal synchronic dynamics before diachronic ones is due to the data peculiarity 
mentioned below. 
 The data used in this study were extracted from a bibliographic database of 
academic conference papers, provided by the National Institute of Informatics, Japan. 
From the database, we extracted the records of conferences hosted between 1992 and 
1997 by four different academic societies: the Institute of Electrical Engineers of Japan; 
the Information Processing Society of Japan; Society of Polymer Science, Japan; and the 
Japan Society for Bioscience, Biotechnology, and Agrochemistry. We regard these as the 
data sampled from the whole author productivity data in each of the four domains, i.e., 
electrical engineering, information processing, polymer science, and biochemistry. Table 
1 shows the basic quantities of each domain: the number of papers N, the number of 
authors A(N), and the coefficient of loss CL.  

CL, is a convenient measure for checking the reliability of data as a sample. CL 
calculates the difference between the actual number of authors who appear in a sample 
of size N and the expected number of authors estimated by using the sample relative 
frequencies at a given size N as estimates of the population probabilities (Chitashvili & 
Baayen, 1993): 
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where f(i,N) and p(i,N) represent the frequency and the sample relative frequency of an 
author ai in a sample of size N respectively, and A(m,N) represents the number of 
authors appearing m times. In all the domains CL exceeds 0.2, which means that the 
number of authors is underestimated by more than 20% if the population probabilities 
are estimated by the sample relative frequencies. It is known that, when CL is large, not 
only the number of authors A(N) but also most of the statistical measures calculated by 
frequencies of events (e.g., authors) crucially depend on sample size N (Tweedie & 
Baayen, 1998). In most author productivity data, as well as in our data, there are many 

 



low-frequency authors, which makes CL large (Kageura, 1999). 
 Likewise, CL is large in 'the co-authorship statistics' of our data. Table 2 shows 
the average values per author of the number of partners Vav(N), those of Gini's index 
Gav(N), and those of the coefficient of loss CLav. We calculated CLav on the basis of the 
partner frequency distribution of each author.2 From the fact that CLav is large in all 
the domains, both Vav(N) and Gav(N) are expected to depend on N. 

The four domains vary in sample size. Therefore, we cannot directly compare 
their populations (not their samples) on the basis of sample size dependent measures. 
Of course, we cannot compare their time-series transitions without considering the 
sample size dependency. Thus, in this study, we observe the transitions of Vav(N) and 
Gav(N) according to increase in the sample size, instead of their time-series transitions. 
That is, this study regards the sample size as an exogenous factor, and compares the 
four domains from the viewpoint of the co-authorship patterns conditioned by the 
number of published papers. 
 
4. Analysis 

In order to observe the growth and change of networks, we carried out 
Monte-Carlo simulation in which we perform 1000 random sub-samplings for each 1000 
interval of the sample size (i.e., N=1000, 2000, 3000, ...). For each sample size, we 
calculated the average value of 1000 trials for each of the two measures, the number of 
partners Vav(N) and Gini's index Gav(N) (i.e., the average values per author of V(N) and 
G(N)). Moreover, we plotted the growth rates of these measures at each sample size. 

Figures 1a and 1b show the developmental profiles of Vav(N) and Gav(N), which 
illustrate the transitions of the measures according to changes in the sample size3. On 
the other hand, Figures 2a and 2b show the growth rates of them. By normalizing the 
sample size (the number of papers), we compare the four domains with the same 
condition. 
 
Vav(N): the number of collaborating partners 

                                                  
2 As for isolated authors who have no coauthored papers, CL cannot be calculated by the 
formula described previously. However, we do not necessarily need CL of all authors for 
claiming the unreliability of the data. That is, if there are some authors who have large 
CL, the co-authorship data is not reliable. So, when we calculated CLav, isolated authors 
were excluded. 
3 In figure 1b, Gav(N), which shows 'inequality', increases according to growth in the 
sample size, because we drop zero sources (unseen authors who do not appear in a 
sample). If we keep them in calculating Gav(N), we may have a different result (see 
Egghe, 2002). 

 



Comparing the four domains by Vav(N)  at the same sample size, we can 
observe that biochemistry has the highest values, and that electrical engineering and 
polymer science are following it while information processing has considerably low 
values. That is to say, on the condition that the domains are equal in the number of 
papers (or places to publish papers), researchers in biochemistry require more 
collaborating partners than do those in the other domains. On the other hand, 
researchers in information processing collaborate with the least partners. 

Roughly speaking, this order corresponds to the order of the number of 
coauthors per paper. In Table 3, we show the number of coauthors per paper C in the 
original data for each domain.4 We can easily imagine that, if the number of coauthors 
per paper is large, the number of partners per author also becomes large. 

However, observing the transition of Vav(N), we find that the order is not fixed 
but dependent on the sample size. In Figure 1a, it is observed that Vav(N) in polymer 
science becomes smaller than that in electric engineering around N=7000. That is, when 
the number of papers is small, the number of partners per author in polymer science is 
larger than that in electrical engineering although polymer science is smaller than 
electrical engineering in the number of coauthors per paper. 
 We can observe the decline of the growth of Vav(N) in polymer science more 
clearly in Figure 2a. According to increase in the sample size, the growth rate of Vav(N) 
in polymer science declines sharply. When the sample size exceeds 20000, the growth 
rate in polymer science becomes almost equal to that in information processing, which 
has the lowest values of Vav(N) among the four domains. 
 From the growth rate of Vav(N) in polymer science in this simulation, we can 
assume that, in this domain, researchers require a relatively large number of partners 
even for publishing a small number of papers, but, by collaborating with these partners 
many times, they can publish many paper without searching many new partners. 
 
Gav(N): the inequality of collaborating frequencies among the partners 

From Figure 1b, it is observed that polymer science has the highest values of 
Gav(N). Polymer science is followed by biochemistry, electrical engineering, and 
information processing. In this figure, similar domains show similar characteristics, i.e., 
the two domains related to chemistry (polymer science and biochemistry) are high in 
Gav(N) while the two domains related to engineering (electrical engineering and 

                                                  
4 C is not a measure calculated by frequencies of events. So, C is free from the problem 
of the sample size dependency. (Of course, it is not free from the problem of the 
confidential interval. In a small sample, the interval of the possible error must be large.) 

 



information processing) are low in Gav(N). This is also observed in Figure 2b, which 
shows the growth rate of Gav(N). 

As for these four domains, we can say that a researcher engaged in chemistry 
collaborates with their partners with various frequencies, and that a researcher 
engaged in engineering collaborates with their partners with relatively similar 
frequencies. 
 
Summary of the results 
 The characteristics of each domain can be summarized as follows. As for 
information processing, both Vav(N) and Gav(N) are low: in this domain researchers are 
collaborating with a relatively small number of partners with relatively similar 
frequencies. As for biochemistry, both V(N) and Gav(N) are high: in this domain 
researchers are collaborating with a relatively large number of partners with various 
frequencies. 
 Electrical engineering and polymer science are medium in the number of 
partners Vav(N). As for Gav(N), polymer science has the highest values among the four 
domains: in this domain researchers have both very frequently collaborating partners 
and very rarely collaborating partners. On the other hand, electrical engineering shows 
similar characteristics to information processing in the inequality of collaborating 
frequencies among the partners. 
 
5. Conclusions 

This study analyzed the change of each author's co-authorship relations 
according to increase in the number of papers, and described the characteristics of the 
co-authorship networks of the four domains. The differences among the domains, which 
are shown in this study, seem to be caused by the differences in research styles, basically. 
On the other hand, there is another possibility that the co-authorship networks are 
affected by undesirable constraints. For example, a difference in affiliation of authors 
may put obstacles in the way of their collaboration. In future works, we will take into 
consideration authors' affiliation, and analyze co-authorship networks more minutely. 
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 N A(N) CL 
Electrical Engineering 19784 25230 0.241 
Information Processing 27047 24267 0.225 
Polymer Science 21505 16820 0.213 
Biochemistry 17782 21315 0.229 
Table 1. The basic quantities of the data for four domains 

 
 

 Vav(N) Gav(N) CLav 
Electrical Engineering 6.46 0.0755 0.256 
Information Processing 4.75 0.0787 0.218 
Polymer Science 6.21 0.109 0.226 
Biochemistry 7.11 0.0958 0.257 

Table 2. The co-authorship statistics for four domains 
 
 

  C 
Electrical Engineering 3.83 
Information Processing 2.93 
Polymer Science 3.55 
Biochemistry 4.05 

Table 3. The number of coauthors per paper in each domain 

 



 
Figure 1a. The developmental profile of Vav(N) in each domain 

 
Figure 1b. The developmental profile of Gav(N) in each domain 

 



 
Figure 2a. The growth rate of Vav(N) in each domain 

 
Figure 2b. The growth rate of Gav(N) in each domain 

 


